Home
Class 12
MATHS
The number of solution of cosx=|1+sinx|,...

The number of solution of `cosx=|1+sinx|,0lexle3pi` is

A

2

B

3

C

4

D

5

Text Solution

Verified by Experts

The correct Answer is:
B

Clearly , `1+sinxge0`
`therefore` The given equation becomes
cosx-sinx=1
`rArr(1)/(sqrt(2))cosx-(1)/(sqrt(2))sinx=(1)/(sqrt(2))`
`rArr"cos"(pi)/(4)"cos x-sin"(pi)/(4)"sinx"=(1)/(sqrt(2))`
`rArrcos(x+(pi)/(4))=(1)/(sqrt(2))`
`x+(pi)/(4)=(pi)/(4),(7pi)/(4),(9pi)/(4),(15pi)/(4)`, ...
`rArrx=0,(3pi)/(2),2pi,(7pi)/(2)`, ...
For `0lexle3pi`
`x=0,(3pi)/(2),2pi`
Promotional Banner

Similar Questions

Explore conceptually related problems

The number of solutions of |cosx|=sinx,0lexle4pi is-

The number of solutions of 2 cosx=|sinx|, 0 le x le 4 pi, is

The number of solution of 2cosx=|sinx| where x in [0.4pi] is/are

General solution of cosx-sinx=1 is

Find the number of solution of [cosx]+|sinx|=1, x inpilt=xlt=3pi (where [ ] denotes the greatest integer function).

The number of solutions of [sinx+cosx]=3+[-sinx]+[-cosx](w h e r e[] denotes the greatest integer function), x in [0,2pi] , is 0 (b) 4 (c) infinite (d) 1

The number of solutions of the equation |cosx-sinx|=2cosx in [0,2pi] is (A) 1 (B) 2 (C) 3 (D) 4

Find the number of solution of the equation 30|sinx|=x"in" 0lexle2pi

Find the number of solution of log_(1/2) |sinx| = 2 - log_(1/2) |cosx|, x in [0, 2pi]

Total number of solutions of sin^(4)x+cos^(4)x=sinx*cosx in [0,2pi] is equal to