Home
Class 12
MATHS
If 0ltxlt1 then sqrt(1+x^(2))[{x cos )...

If `0ltxlt1` then
`sqrt(1+x^(2))[{x cos )(cot^(-1)x)+sin(cot^(-1)x}^(2)-1]^(-//2)`

A

`(x)/(sqrt(1+x^(2)))`

B

x

C

`xsqrt(1+x^(2))`

D

`sqrt(1+x^(2))`

Text Solution

Verified by Experts

The correct Answer is:
C

We have , `0ltxlt1`
Now , `sqrt(1+x^(2))[{xcos(cot^(-1)x)+sin(cot^(-1)x)}^(2)-1]^(1//2)`
`=sqrt(1+x^(2))[{xcos("cos"^(-1)(x)/(sqrt(1+x^(2))))+sin("sin"^(-1)(1)/(sqrt(1+x^(2))))}^(2)-1]^(-1//2)`
`=sqrt(1+x^(2))[{x(x)/(sqrt(1+x^(2)))+(1)/(sqrt(1+x^(2)))}^(2)-1]^(1//2)`
`=sqrt(1+x^(2))[((1+x^(2))/(sqrt(1+x^(2))))^(2)-1]^(1//2)`
`=sqrt(1+x^(2))[1+x^(2)-1]^(1//2)`
`=xsqrt(1+x^(2))`
Promotional Banner

Similar Questions

Explore conceptually related problems

If 0ltxlt1 then sqrt(1+x^(2))[{x cos (cot^(-1)x)+sin(cot^(-1)x}^(2)-1]^(1/2)

If 0 lt x lt 1", then " sqrt(1+x^(2))[{x cos (cot^(-1)x) + sin ( cot^(-1) x)}^(2) -1]^(1//2) is equal to

If 0

log_(e)sin^(-1)x^(2)(cot^(-1)x^(2))

Statement 1: If x=(1)/(5 sqrt(2)) , then [x cos(cot^(-1)x)+sin(cot^(-1)x)]^(2)=(51)/(50) . Statement 2: tan["cot"^(-1)(1)/(5sqrt(2))-"sin"^(-1)(4)/(sqrt(17))]=(29)/(3) .

cot^(-1)((sqrt(1-x^(2)))/(x))