Home
Class 12
MATHS
For all values of theta,3-costheta+cos(t...

For all values `of theta,3-costheta+cos(theta+(pi)/(3))` lie in the interval

A

`-2,3`

B

`-2,1`

C

`2,4`

D

`1,5`

Text Solution

Verified by Experts

The correct Answer is:
C

`3-costheta+cos(theta+(pi)/(3))`
`=3-costheta+(1)/(2)"cos"theta-(sqrt(3))/(2)sintheta`
`=3-(1)/(2)"cos"theta-(sqrt(3))/(2)sintheta`
`=3-"sin"(pi)/(6)"cos "theta-"cos"(pi)/(6)"sin "theta=3-sin(theta+(pi)/(6))`
Since , `-1lesinthetale1`
`therefore-1le-sin(theta+(pi)/(6))le1`
`rArr-1+3le3-sin(theta+(pi)/(6))le1+3`
`rArr2le3-sin(theta+(pi)/(6))le4`
Hence , the value of expression lies in [2,4].
Promotional Banner

Similar Questions

Explore conceptually related problems

If theta is real then 3 - cos theta + cos (theta + (pi)/(3)) lies in the interval

costheta.cos2theta.cos3theta=1/4

The maximum value of 5costheta+3cos(theta+pi/3)+3 is:

costheta-cos2theta=sin3theta

Find the number of solution of the equation (2sintheta-sin3theta)/(1+costheta)+(3costheta+cos3theta)/(1-sintheta)=4sqrt(2)cos(theta+(pi)/(4)) in the interval (-10pi,8pi].

For -pi/2 lt theta lt pi/2, (sintheta + sin 2theta)/(1+costheta + cos2theta) lies in the interval

Prove that all values of theta: |(sintheta, costheta, sin2theta),(sin(theta+(2pi)/3), cos(theta+(2pi)/3), sin (2theta+(4pi)/3)),(sin (theta- (2pi)/3), cos (theta- (2pi)/3), sin (2theta- (4pi)/3))|=0

Write the interval in which the values of 5cos theta+3cos(theta+(pi)/(3))+3 lie.