Home
Class 12
MATHS
sin[3sin^(-1)((1)/(5))] is equal to...

`sin[3sin^(-1)((1)/(5))]` is equal to

A

`(71)/(125)`

B

`(74)/(125)`

C

`(3)/(5)`

D

`(1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sin\left(3 \sin^{-1}\left(\frac{1}{5}\right)\right) \), we can use the formula for \( \sin(3\theta) \) in terms of \( \sin(\theta) \). ### Step-by-Step Solution: 1. **Identify the value of \( x \)**: Let \( x = \sin^{-1}\left(\frac{1}{5}\right) \). Therefore, we have: \[ \sin(x) = \frac{1}{5} \] 2. **Use the formula for \( \sin(3\theta) \)**: The formula for \( \sin(3\theta) \) is: \[ \sin(3\theta) = 3\sin(\theta) - 4\sin^3(\theta) \] Here, we will substitute \( \theta = x \). 3. **Substitute \( \sin(x) \)**: Now substituting \( \sin(x) = \frac{1}{5} \): \[ \sin(3x) = 3\left(\frac{1}{5}\right) - 4\left(\frac{1}{5}\right)^3 \] 4. **Calculate \( \left(\frac{1}{5}\right)^3 \)**: \[ \left(\frac{1}{5}\right)^3 = \frac{1}{125} \] 5. **Substitute this value back**: \[ \sin(3x) = 3\left(\frac{1}{5}\right) - 4\left(\frac{1}{125}\right) \] \[ = \frac{3}{5} - \frac{4}{125} \] 6. **Find a common denominator**: The common denominator between 5 and 125 is 125. Convert \( \frac{3}{5} \) to have a denominator of 125: \[ \frac{3}{5} = \frac{3 \times 25}{5 \times 25} = \frac{75}{125} \] 7. **Combine the fractions**: Now we can combine the two fractions: \[ \sin(3x) = \frac{75}{125} - \frac{4}{125} = \frac{75 - 4}{125} = \frac{71}{125} \] 8. **Final Result**: Thus, the value of \( \sin\left(3 \sin^{-1}\left(\frac{1}{5}\right)\right) \) is: \[ \frac{71}{125} \]

To solve the expression \( \sin\left(3 \sin^{-1}\left(\frac{1}{5}\right)\right) \), we can use the formula for \( \sin(3\theta) \) in terms of \( \sin(\theta) \). ### Step-by-Step Solution: 1. **Identify the value of \( x \)**: Let \( x = \sin^{-1}\left(\frac{1}{5}\right) \). Therefore, we have: \[ \sin(x) = \frac{1}{5} ...
Promotional Banner

Similar Questions

Explore conceptually related problems

sin [(pi)/(3) - sin^(-1) (-(1)/(2))] is equal to :

sin((pi)/(3)-sin^(-1)(-(1)/(2))) is equal to (A)

sin^(-1)((12)/(13))-sin^(-1)((3)/(5)) is equal to

sin^(-1)(cos((5pi)/4)) is equal to

sin(cos^(-1)(3/5)) is equal to

The valueof 2sin^(-1).(4)/(5)+2sin^(-1).(5)/(13)+2sin^(-1).(16)/(65) is equal to

What is sin [sin^(-1)((3)/(5))+sin^(-1)((4)/(5))] equal to ?

"sin"^(-1)(8)/(17)+"sin"^(-1)(3)/(5) is equal to