Home
Class 12
MATHS
The value of x for which sin(cot^-1(1+x)...

The value of `x` for which `sin(cot^-1(1+x))=cos(tan^-1x)` is

A

`-(1)/(2)`

B

1

C

0

D

`(1)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
A

`sin["sin"^(-1)(1)/(sqrt((1+x)^(2)+1))]=cos("cos"^(-1)(1)/(sqrt(1+x^(2))))`
`rArr(1)/(sqrt((1+x)^(2)+1)]=(1)/(sqrt(1+x^(2)))`
`rArr(1+x)^(2)+1=1+x^(2)`
`rArr2x+2=0`
`thereforex=-(1)/(2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of x for which sin(cot^(-1)(1+x))=cos(tan^(-1)x) is (a) (1)/(2) (b) 1(c)0(d)-(1)/(2)

The value of x for which "sin"(cot^(-1)(1+x))="cos"(tan^(-1)x) is 1/2 (b) 1 (c) 0 (d) -1/2

If sin (cot^(-1)(1-x))=cos(tan^(-1)(-x)) , then x is

If sin{cot^(-1)(x+1)}=cos(tan^(-1)x), then find x.

The number values of x if cos(tan^(-1)(1+x))=sin(cot^(-1)x) is/are

sin{cot^(-1)[cos(tan^(-1)x)]}=....