Home
Class 12
MATHS
The value of x where xgt0 and tan(sec^(-...

The value of x where `xgt0 and tan(sec^(-1))(1/x)=sin(tan^(-1)2)` is

A

`sqrt(5)`

B

`(sqrt(5))/(3)`

C

1

D

`(2)/(3)`

Text Solution

Verified by Experts

The correct Answer is:
B

Given , `tan{sec^(-1)((1)/(x))}=sin(tan^(-1)2)`
`rArrtan("tan"^(-1)(sqrt(1-x^(2)))/(x))=sin("sin"^(-1)(2)/(sqrt(1+2^(2))))`
`[becausesec^(-1)x=("tan"^(-1)sqrt(1-x^(2)))/(x),tan^(-1)x="sin"^(-1)(x)/(sqrt(1+x^(2)))]`
`rArr(sqrt(1-x^(2)))/(x)=(2)/(sqrt(5))rArr4x^(2)=5(1-x^(2))`
`rArrx^(2)=(5)/(9)rArrx=(sqrt(5))/(3)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Value of x satisfying tan(sec^(-1)x)=sin(cos^(-1)((1)/(sqrt(5))))

The value of lim_(x rarr0)(sin^(-1)(2x)-tan^(-1)x)/(sin x) is equal to:

sec^(-1)((1+tan^(2)x)/(1-tan^(2)x))

sin(cot^(-1)(tan(tan^(-1)x))),x in(0,1]

The value of tan(sin^(-1)(cos(sin^(-1)x)))tan(cos^(-1)(sin(cos^(-1)x))), where x in(0,1) is equal to 0(b)1(c)-1(d) none of these

The value of int_(0)^(1)(tan^(-1)((x)/(x+1)))/(0tan^(-1)((1+2x-2x^(2))/(2)))dx is

The value of int_(0)^(1)(tan^(-1)((x)/(x+1)))/(0tan^(-1)((1+2x-2x^(2))/(2)))dx is

Find the set of all real values of x satisfying the inequality sec^(-1)xgt tan^(-1)x .

If (x -1) (x^(2) + 1) gt 0 , then find the value of sin((1)/(2) tan^(-1).(2x)/(1 - x^(2)) - tan^(-1) x)

For x,y,z,t in R , if sin^(-1)x+cos^(-1)y+sec^(-1)z ge t^(2)-sqrt(2pi)*t+3pi , then the value of tan^(-1)x+tan^(-1)y+tan^(-1)z+tan^(-1)( sqrt((2)/(pi))t) is __________.