Home
Class 12
MATHS
The number of real solutions of tan^(-1)...

The number of real solutions of `tan^(-1)sqrt(x(x+1))+sin^(-1)sqrt(x^2+x+1)=pi/2` is

A

0

B

1

C

2

D

`infty`

Text Solution

Verified by Experts

The correct Answer is:
C

Given, `tan^(-1)sqrt(x(x+1))=(pi)/(2)-sin^(-1)sqrt(x^(2)+x+1)`
`cos^(-1)(1)/(sqrt((x^(2)+x)^(2)+1))=cos^(-1)sqrt(x^(2)+x+1)`
`rArr(1)/(sqrt((x^(2)+x)^(2)+1))=sqrt(x^(2)+x+1)`
`rArr1=(x^(2)+x+1)[(x^(2)+x)^(2)+1]`
`rArr(x^(2)+x)^(3)+(x^(2)+x)^(2)+(x^(2)+x)+1=1`
`rArr(x^(2)+x){(x^(2)+x)^(2)+(x^(2)+x)}+1=0`
`rArrx^(2)+x=0rArrx=0,-1`
Thus , number of solutions =2
Promotional Banner

Similar Questions

Explore conceptually related problems

The number of real solution of cot^(-1)sqrt(x(x+3))+sin^(-1)sqrt(x^(2)+3x+1)=(pi)/(2) is /are

The number of real solution of cot^(-1)sqrt(x(x+4))+cos^(-1)sqrt(x^(2)+4x+1)=(pi)/(2) is equal to

The number of solution of tan^-1(sqrt(x(x-1)))+sin^-1(sqrt(x^2+x+1))=pi/2 are

The number of real roots of the equation tan^(-1)sqrt(x(x+1))+sin^(-1)sqrt(x^(2)+x+1)=(pi)/(4) is :

Number of real solutions of sqrt(x)+sqrt(x-sqrt(1-x))=1 is

The number of real solution of the equation tan^(-1)sqrt(x^(2)-3x+7)+cos^(-1)sqrt(4x^(2)-x+3)=pi is

The number of real solutions of the equations x+sqrt(x^(2)+sqrt(x^(3)+1))=1

The number of real solution(s) of the equation sin^(-1)sqrt(x^(2)-5x+5)+cos^(-1)sqrt(4x-x^(2)-3)=pi is/are

tan^(-1)sqrt((1-x)/(1+x))+sin^(-1)2x sqrt(1-x^(2))=(5 pi)/(12) if x=