Home
Class 12
MATHS
If sin^(-1)(1-x) sin^(-1)x=(pi)/(2) then...

If `sin^(-1)(1-x) sin^(-1)x=(pi)/(2)` then x equal

A

`0,-(1)/(2)`

B

`0,(1)/(2)`

C

0

D

3,4

Text Solution

Verified by Experts

The correct Answer is:
C

Given , `sin^(-1)(1-x)=(pi)/(2)+2sin^(-1)x`
`rArr1-x=sin((pi)/(2)+2sin^(-1)x)`
`rArr1-x=cos(2sin^(-1)x)`
`rArr1-x=cos(2cos^(-1)sqrt(1-x^(2)))`
`rArr1-x=cos[cos^(-1)(2sqrt(1-x^(2)))^(2)-1]`
`rArr1-x=cos{cos^(-1)(1-2x^(2))}`
`rArr1-x=1-2x^(2)rArr2x^(2)-x=0`
`rArrx=0,(1)/(2)`
`thereforex=0[becausex=(1)/(2)` does not satisfy the given equation]
Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^(-1)(1-x) -2sin^(-1)x=(pi)/(2) then x equal

sin^(-1)(1-x)-2sin^(-1)x=(pi)/(2), then x is equal to (A)0,(1)/(2)(B)1,(1)/(2)(C)0(D)(1)/(2)

If sin^(-1)(1-x)-2 sin^(-1)x=(pi)/(2) , then x is equal to

If sin ^(-1) (1-x)-2 sin ^(-1) x = (pi)/(2) then x = ?

Number of solutions of the equation,sin^(-1)(1-x)-4sin^(-1)(x)=(pi)/(2), is equal to

Solve sin^(-1)x+sin^(-1)2x=(pi)/(3)