Home
Class 12
MATHS
The value of sum(m=1)^ootan^(- 1)((2m)/...

The value of `sum_(m=1)^ootan^(- 1)((2m)/(m^4+m^2+2))` is

A

`tan^(-1)((n^(2)+n)/(n^(2)+n+2))`

B

`tan^(-1)((n^(2)-n)/(n^(2)-n+2))`

C

`tan^(-1)(n^(2)+n+2)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A

`sum_(m=1)^(n)tan^(-1)((2m)/(m^(4)+m^(2)+2))`
`=sum_(m=1)^(n)"tan"^(-1)(((m^(2)+m+1)-(m^(2)-m+1))/(1+(m^(2)+m+1)(m^(2)-m+1)))`
`=sum_(m=1)^(n)[tan^(-1)(m^(2)+m+1)-tan^(-1)(m^(2)-m+1)]`
`=tan^(-1)(n^(2)+n+1)-tan^(-1)1`
`=tan^(-1)[(n^(2)+n+1-1)/(1+(n^(2)+n+1)1)]`
`=tan^(-1)((n^(2)+n)/(2+n^(2)+n))`
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sum_(m=1)^(oo)tan^(-1)((2m)/(m^(4)+m^(2)+2)) is

The value of sum_(m=1)^(n) "tan"^(-1)((2m)/(m^(4) + m^(2) +2 )) is :

Prove that : sum_(m=1)^n\ \ \ tan^(-1)((2m)/(m^4+m^2+2))=tan^(-1)((n^2+n)/(n^2+n+2))

Prove that: sum_(m=1)^(n)tan^(-1)((2m)/(m^(4)+m^(2)+2))=tan^(-1)((n^(2)+n)/(n^(2)+n+2))