Home
Class 12
MATHS
cot^(-1)(sqrtcosalpha)-tan^(-1)(sqrt(cos...

`cot^(-1)(sqrtcosalpha)-tan^(-1)(sqrt(cosalpha))`=x, x, ge 0`, then sin x equals

A

`tan^(2)((alpha)/(2))`

B

`cot^(2)((alpha)/(2))`

C

`tanalpha`

D

`cot((alpha)/(2))`

Text Solution

Verified by Experts

The correct Answer is:
A

Given , `tan^(-1)((1)/(sqrt(cosalpha)))-tan^(-1)(sqrt(cosalpha))=x`
`rArrtan^(-1)(((1)/(sqrt(cosalpha))-sqrt(cosalpha))/(1+(1)/(sqrt(cosalpha))*sqrt(cosalpha)))=x`
`rArr(1-cosalpha)/(2sqrt(cosalpha))=tanx`
`rArr(2sqrt(cosalpha))/(1-cosalpha)=cotx`
`rArrcosecx=(1+cosalpha)/(1-cosalpha)`
`rArrsinx=(1-cosalpha)/(1+cosalpha)`
`rArrsinx=(2sin^(2)((alpha)/(2)))/(2cos^(2)((alpha)/(2)))=tan^(2)((alpha)/(2))`
Promotional Banner

Similar Questions

Explore conceptually related problems

cot_(sin x)^(-1)(sqrt(cos alpha))-tan^(-1)(sqrt(cos alpha))=x then

if cot^(-1)[sqrt(cos alpha)]-tan^(-1)[sqrt(cos alpha)]=x then sin x is equal to

cot^(-1)((alpha)/(2))-tan^(-1)(sqrt(cosalpha))=x , then sin x is equal to

If y=cot^(-1)(sqrt(cos x))-tan^(-1)(sqrt(cos x)), prove that sin y=tan^(2)(x)/(2)

If cot(sin^(-1)sqrt(1-x^(2)))=sin(tan^(-1)(x sqrt(6))),x!=, then possible value of x is

sin(cot^(-1)(tan(tan^(-1)x))),x in(0,1]

cos[tan^(-1){sin(cot^(-1)x)}] is equal to