Home
Class 12
MATHS
If 2tan^(-1)(cosx)=tan^(-1)(2cosecx), t...

If `2tan^(-1)(cosx)=tan^(-1)(2cosecx)`, then sinx +cosx is equal to

A

`2sqrt(2)`

B

`sqrt(2)`

C

`(1)/(sqrt(2))`

D

`(1)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
B

Given , `2tan^(-1)(cosx)=tan^(-1)(2cosecx)`
`rArr"tan"^(-1)(2cosx)/(1-cos^(2)x)=tan^(-1)((2)/(sinx))`
`rArr(2cosx)/(1-cos^(2)x)=(2)/(sinx)`
`rArr(cosx)/(sin^(2)x)=(1)/(sinx)`
`rArr(cosx)/(sinx)=1 " "[becausesinxne0]`
`rArrtanx=1rArrx=(pi)/(4)`
Now , `sinx+cosx="sin"(pi)/(4)+"cos"(pi)/(4)`
`=(1)/(sqrt(2))+(1)/(sqrt(2))=sqrt(2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If 2tan^(-1)(cosx)=tan^(-1)(2cosecx) , then x=

int(cosx-sinx)/(1+2sin x cosx)dx is equal to

tan^(-1)((1+sinx)/cosx)=

tan^-1(cosx/(1-sinx))

tan^(-1)((cosx+sinx)/(cos x-sinx))

Solve the equation 2 tan ^(-1)(cosx)=tan^(-1)(2cosec x) .

f(x)=tan^(-1)(sinx+cosx),"then "f(x) is increasing in