Home
Class 12
MATHS
The position vectorof the point where th...

The position vectorof the point where the line `vec(r)=hat(i)-hat(j)+hat(k)+t(hat(i)+hat(j)-hat(k))` meets the plane `vec(r)*(hat(i)+hat(j)+hat(k))=5`, is

A

`5hat(i)+hat(i)-hat(k)`

B

`5hat(i)+3hat(j)-3hat(k)`

C

`2hat(i)+hat(j)+2hat(k)`

D

`5hat(i)+hat(j)-hat(k)`

Text Solution

Verified by Experts

The correct Answer is:
B

Given `vec(r)=(hat(i)-hat(j)+hat(k))+t(hat(i)+hat(j)-hat(k))`
`=(1+t)hat(i)-(1-t)hat(j)+(1-t)hat(k)`
Also, `vec(r).(hat(i)+hat(j)+hat(k))=5`
Since line meets the plane therefore `vec(r)` satisfy the equation of plane.
`:.(1+t)-(1-t)+(1-t)=5`
`rArr" "1+t=5rArrt=4`
`:." "vec(r)=(1+4)hat(i)-(1-4)hat(i)+(1-4)hat(k)=5hat(i)+3hat(j)-3hat(k)`
Promotional Banner

Topper's Solved these Questions

  • PLANE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise Practice exercise (Exercise 1) Topical problems (Angle between the planes and angle between line and plane)|13 Videos
  • PLANE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise Practice exercise (Exercise 1) Topical problems (Coplanarity of two lines and distance of a point from a plane)|16 Videos
  • PAIR OR STRAIGHT LINES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|13 Videos
  • PRACTICE SET 01

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise Paper 2 (Mathematics)|50 Videos

Similar Questions

Explore conceptually related problems

The angle between the line r=(hat(i)+2hat(j)-hat(k))+lamda(hat(i)-hat(j)+hat(k)) and the plane r*(2hat(i)-hat(j)+hat(k))=4 is

Find the angle between the line: vec(r) = (hat(i) - hat(j) + hat(k) ) + lambda (2 hat(i) - hat(j) + 3 hat(k)) and the plane vec(r). (2 hat(i) + hat(j) - hat(k) ) = 4. Also, find the whether the line is parallel to the plane or not.

Find the point of intersection of the line : vec(r) = (hat(i) + 2 hat(j) + 3 hat(k) ) + lambda (2 hat(i) + hat(j) + 2 hat(k)) and the plane vec(r). (2 hat(i) - 6 hat(j) + 3 hat(k) ) + 5 = 0.

A point on the line vec r=2hat i+3hat j+4hat k+t(hat i+hat j+hat k) is

Find the shortest distance between the lines : vec(r) = (4hat(i) - hat(j)) + lambda(hat(i) + 2hat(j) - 3hat(k)) and vec(r) = (hat(i) - hat(j) + 2hat(k)) + mu (2hat(i) + 4hat(j) - 5hat(k))

The unit vector normal to the plane containing vec(a)=(hat(i)-hat(j)-hat(k)) and vec(b)=(hat(i)+hat(j)+hat(k)) is

Find the angle between the line vec r=hat i+2hat j-hat k+lambda(hat i-hat j+hat k) and the plane vec r*(2hat i-hat j+hat k)=4

Find the angle between the line vec r=(2hat i-hat j+3hat k)+lambda(3hat i-hat j+2hat k) and the plane vec r*(hat i+hat j+hat k)=3

Find the angle between the lines vec r*(hat i+2hat j-hat k)+lambda(hat i-hat j+hat k) and the plane vec r*(2hat i-hat j+hat k)=4