Home
Class 12
MATHS
The position vectors of the points where...

The position vectors of the points where the line `r=hat(i)-hat(j)+hat(k)+t(hat(i)+hat(j)-hat(k))` meets the plane `r*(hat(i)+hat(j)+hat(k))=5`, is

A

`5hat(i)+hat(j)+hat(k)`

B

`5hat(i)+3hat(j)-3hat(k)`

C

`2hat(i)+hat(j)+2hat(k)`

D

`5hat(i)+hat(j)+hat(k)`

Text Solution

Verified by Experts

The correct Answer is:
B

Given equation of line is
`r=hat(i)-hat(j)+hat(k)+(hat(i)+hat(j)-hat(k))`
Plane, `r*(hat(i)+hat(j)+k)=5`
Equation of line and in cartesian from
`(x-1)/(2)=(y+1)/(1)=(z-1)/(-1)` . . . (i)
`and" "x+y+z=5` . . . (ii)
`"Let "(x-1)/(1)=(y+1)/(1)=(z-1)/(1)=lamda`
`rArr" "x=lamda+1,y=lamda-1,a=-lamda+1`
but putting value of x,y and z in Eq. (ii)
`lamda+1+lamda-1-lamda+1=5`
`rArr" "2lamda-lamda+2-1=5`
`rArr" "lamda=4`
so points are `x=5,y=3,z=-3`
Hence, the position vector of the point is `5hat(i)+3hat(j)-3hat(k)`
Promotional Banner

Topper's Solved these Questions

  • PLANE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise Practice exercise (Exercise 1) Topical problems (Angle between the planes and angle between line and plane)|13 Videos
  • PLANE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise Practice exercise (Exercise 1) Topical problems (Coplanarity of two lines and distance of a point from a plane)|16 Videos
  • PAIR OR STRAIGHT LINES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|13 Videos
  • PRACTICE SET 01

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise Paper 2 (Mathematics)|50 Videos

Similar Questions

Explore conceptually related problems

The position vectorof the point where the line vec(r)=hat(i)-hat(j)+hat(k)+t(hat(i)+hat(j)-hat(k)) meets the plane vec(r)*(hat(i)+hat(j)+hat(k))=5 , is

The angle between the line r=(hat(i)+2hat(j)-hat(k))+lamda(hat(i)-hat(j)+hat(k)) and the plane r*(2hat(i)-hat(j)+hat(k))=4 is

The acute angle between the line r=(hat(i)+2hat(j)+hat(k))+lamda(hat(i)+hat(j)+hat(k)) and the plane r*(2hat(i)+hat(j)+hat(k))=5

A point on the line vec r=2hat i+3hat j+4hat k+t(hat i+hat j+hat k) is

Find the angle between the line: vec(r) = (hat(i) - hat(j) + hat(k) ) + lambda (2 hat(i) - hat(j) + 3 hat(k)) and the plane vec(r). (2 hat(i) + hat(j) - hat(k) ) = 4. Also, find the whether the line is parallel to the plane or not.

A unit vector in the plane of hat(i)+2hat(j)+hat(k) and hat(i)+hat(j)+2hat(k) and perpendicular to 2hat(i)+hat(j)+hat(k) , is

Find the cartesian form of the equation of the plane . bar(r)=(hat(i)+hat(j))+s(hat(i)-hat(j)+2hat(k))+t(hat(i)+2hat(j)+hat(k))

A vector perpendicular to (hat(i)+hat(j)+hat(k)) and (hat(i)-hat(j)-hat(k)) is :-

Show that the following points whose position vectors are given are collinear : (i) 5 hat(i) + 5 hat(k), 2 hat(i) + hat(j) + 3 hat(k) and - 4 hat(i) + 3 hat(j) - hat(k) (ii) - 2 hat(i) + 3 hat(j) + 5 hat(k), hat(i) + 2 hat(j) + 3 hat(k) and 7 hat(i) - hat(k) .