Home
Class 12
MATHS
The angle between the line r=(hat(i)+2...

The angle between the line
`r=(hat(i)+2hat(j)-hat(k))+lamda(hat(i)-hat(j)+hat(k))` and the plane `r*(2hat(i)-hat(j)+hat(k))=4` is

A

0

B

`(pi)/(2)`

C

`pi`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
D

Here, `b=hat(i)-hat(j)+hat(k)andn-2hat(i)-hat(j)+hat(k)`
`:." "sintheta=((hat(i)-hat(j)+hat(k))*(2hat(i)-hat(j)+hat(k)))/(sqrt(1+1+1)sqrt(4+1+1))`
`=(4)/(3sqrt(2))=(2sqrt(2))/(3)`
`rArr" "theta=sin^(-1)(2sqrt(2)/(3))`
Promotional Banner

Topper's Solved these Questions

  • PLANE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise Practice exercise (Exercise 1) Topical problems (Coplanarity of two lines and distance of a point from a plane)|16 Videos
  • PLANE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise Practice exercise (Exercise 2) Miscellaneous problems|44 Videos
  • PLANE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|9 Videos
  • PAIR OR STRAIGHT LINES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|13 Videos
  • PRACTICE SET 01

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise Paper 2 (Mathematics)|50 Videos

Similar Questions

Explore conceptually related problems

The acute angle between the line r=(hat(i)+2hat(j)+hat(k))+lamda(hat(i)+hat(j)+hat(k)) and the plane r*(2hat(i)+hat(j)+hat(k))=5

The distance between the line r=2hat(i)-2hat(j)+3hat(k)+lambda(hat(i)-hat(j)+4hat(k)) and the plane rcdot(hat(i)+5hat(j)+hat(k))=5, is

The distance between the line r=2hat(i)-2hat(j)+3hat(k)+lambda(hat(i)-hat(j)+4hat(k)) and the plane rcdot(hat(i)+5hat(j)+hat(k))=5, is

Find the angle between the line vec r=hat i+2hat j-hat k+lambda(hat i-hat j+hat k) and the plane vec r*(2hat i-hat j+hat k)=4

Find the angle between the lines vec r*(hat i+2hat j-hat k)+lambda(hat i-hat j+hat k) and the plane vec r*(2hat i-hat j+hat k)=4

Find the angle between the line: vec(r) = (hat(i) - hat(j) + hat(k) ) + lambda (2 hat(i) - hat(j) + 3 hat(k)) and the plane vec(r). (2 hat(i) + hat(j) - hat(k) ) = 4. Also, find the whether the line is parallel to the plane or not.

The angle between the vectors : vec(a)=hat(i)+2hat(j)-3hat(k) and 3hat(i)-hat(j)+2hat(k) is :

Find the shortest distance between the lines : vec(r) = (4hat(i) - hat(j)) + lambda(hat(i) + 2hat(j) - 3hat(k)) and vec(r) = (hat(i) - hat(j) + 2hat(k)) + mu (2hat(i) + 4hat(j) - 5hat(k))

Find the angle between the line vec r=(2hat i-hat j+3hat k)+lambda(3hat i-hat j+2hat k) and the plane vec r*(hat i+hat j+hat k)=3

The position vectorof the point where the line vec(r)=hat(i)-hat(j)+hat(k)+t(hat(i)+hat(j)-hat(k)) meets the plane vec(r)*(hat(i)+hat(j)+hat(k))=5 , is