Home
Class 12
MATHS
A unit vector in the plane of hat(i)+2ha...

A unit vector in the plane of `hat(i)+2hat(j)+hat(k) and hat(i)+hat(j)+2hat(k)` and perpendicular to `2hat(i)+hat(j)+hat(k)`, is

A

`hat(j)-hat(k)`

B

`(hat(i)+hat(j))/(sqrt(2))`

C

`(hat(j)+hat(k))/(sqrt(2))`

D

`(hat(j)-hat(k))/(sqrt(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding a unit vector in the plane of the vectors \( \hat{i} + 2\hat{j} + \hat{k} \) and \( \hat{i} + \hat{j} + 2\hat{k} \), and perpendicular to the vector \( 2\hat{i} + \hat{j} + \hat{k} \), we can follow these steps: ### Step 1: Identify the Given Vectors We have the following vectors: - \( \mathbf{a} = \hat{i} + 2\hat{j} + \hat{k} \) - \( \mathbf{b} = \hat{i} + \hat{j} + 2\hat{k} \) - \( \mathbf{c} = 2\hat{i} + \hat{j} + \hat{k} \) ### Step 2: Find a Vector in the Plane of \( \mathbf{a} \) and \( \mathbf{b} \) A vector \( \mathbf{v} \) in the plane of \( \mathbf{a} \) and \( \mathbf{b} \) can be expressed as a linear combination: \[ \mathbf{v} = x(\hat{i} + 2\hat{j} + \hat{k}) + y(\hat{i} + \hat{j} + 2\hat{k}) \] Expanding this, we get: \[ \mathbf{v} = (x + y)\hat{i} + (2x + y)\hat{j} + (x + 2y)\hat{k} \] ### Step 3: Set Up the Perpendicular Condition Since \( \mathbf{v} \) must be perpendicular to \( \mathbf{c} \), we use the dot product: \[ \mathbf{v} \cdot \mathbf{c} = 0 \] Calculating the dot product: \[ (x + y)(2) + (2x + y)(1) + (x + 2y)(1) = 0 \] This simplifies to: \[ 2(x + y) + (2x + y) + (x + 2y) = 0 \] Combining like terms: \[ 2x + 2y + 2x + y + x + 2y = 0 \implies 5x + 5y = 0 \] Thus, we have: \[ x + y = 0 \implies y = -x \] ### Step 4: Substitute Back to Find \( \mathbf{v} \) Substituting \( y = -x \) into the expression for \( \mathbf{v} \): \[ \mathbf{v} = x(\hat{i} + 2\hat{j} + \hat{k}) - x(\hat{i} + \hat{j} + 2\hat{k}) \] This simplifies to: \[ \mathbf{v} = x\left[(\hat{i} - \hat{i}) + (2\hat{j} - \hat{j}) + (\hat{k} - 2\hat{k})\right] = x(0 + \hat{j} - \hat{k}) = x(\hat{j} - \hat{k}) \] ### Step 5: Find the Unit Vector To find the unit vector, we need to normalize \( \mathbf{v} \): \[ \text{Magnitude of } \mathbf{v} = |x| \sqrt{1^2 + (-1)^2} = |x| \sqrt{2} \] Thus, the unit vector \( \mathbf{u} \) is given by: \[ \mathbf{u} = \frac{\mathbf{v}}{|\mathbf{v}|} = \frac{x(\hat{j} - \hat{k})}{|x|\sqrt{2}} = \frac{\hat{j} - \hat{k}}{\sqrt{2}} \] ### Final Answer The unit vector is: \[ \mathbf{u} = \frac{\hat{j} - \hat{k}}{\sqrt{2}} \]

To solve the problem of finding a unit vector in the plane of the vectors \( \hat{i} + 2\hat{j} + \hat{k} \) and \( \hat{i} + \hat{j} + 2\hat{k} \), and perpendicular to the vector \( 2\hat{i} + \hat{j} + \hat{k} \), we can follow these steps: ### Step 1: Identify the Given Vectors We have the following vectors: - \( \mathbf{a} = \hat{i} + 2\hat{j} + \hat{k} \) - \( \mathbf{b} = \hat{i} + \hat{j} + 2\hat{k} \) - \( \mathbf{c} = 2\hat{i} + \hat{j} + \hat{k} \) ...
Promotional Banner

Topper's Solved these Questions

  • PLANE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise Practice exercise (Exercise 2) Miscellaneous problems|44 Videos
  • PAIR OR STRAIGHT LINES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|13 Videos
  • PRACTICE SET 01

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise Paper 2 (Mathematics)|50 Videos

Similar Questions

Explore conceptually related problems

The vector(s) which is/are coplanar with vectors hat(i)+hat(j)+2hat(k) and hat(i)+2hat(j)+hat(k) are perpendicular to the vector hat(i)+hat(j)+hat(k) is are

A vector perpendicular to (hat(i)+hat(j)+hat(k)) and (hat(i)-hat(j)-hat(k)) is :-

If hat(i), hat(j), hat(k) are the unit vectors and mutually perpendicular, then [[hat(i), hat(j), hat(k)]] =

The angle between the line r=(hat(i)+2hat(j)-hat(k))+lamda(hat(i)-hat(j)+hat(k)) and the plane r*(2hat(i)-hat(j)+hat(k))=4 is

Show that the lines vec(r) =(hat(i) +2hat(j) +hat(k)) +lambda (hat(i)-hat(j)+hat(k)) " and " vec(r ) =(hat(i) +hat(j) -hat(k)) + mu (hat(i)- hat(j) + 2hat(k)) Do not intersect .

Find a unit vector perpendicular to A=2hat(i)+3hat(j)+hat(k) and B=hat(i)-hat(j)+hat(k) both.

Find the vector projection of the vector : 2hat(i)-hat(j)+hat(k) on hat(i)-2hat(j)+hat(k) .

What is the value of lamda for which the vectors hat(i) - hat(j) + hat(k), 2hat(i) + hat(j)- hat(k) and lamda hat(i) - hat(j)+ lamda (k) are coplanar

Find the vector projection of the vector : 7hat(i)+hat(j)-hat(k) on 2hat(i)+6hat(j)+3hat(k)

What is the value of lambda for which the vectors hat(i)-hat(j)+hat(k), 2 hat(i)+hat(j)-hat(k) and lambda hat(i)-hat(j)+lambda hat(k) are co-planar?