Home
Class 12
MATHS
If A=[(x,1),(1,0)] and A^(2) is the iden...

If `A=[(x,1),(1,0)]` and `A^(2)` is the identity matrix, then `x` is equal to

A

`-1`

B

`0`

C

`1`

D

`2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x \) such that the matrix \( A = \begin{pmatrix} x & 1 \\ 1 & 0 \end{pmatrix} \) satisfies the condition \( A^2 = I \), where \( I \) is the identity matrix. ### Step-by-Step Solution: 1. **Calculate \( A^2 \)**: \[ A^2 = A \cdot A = \begin{pmatrix} x & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} x & 1 \\ 1 & 0 \end{pmatrix} \] To multiply the matrices, we use the formula for matrix multiplication: \[ A^2 = \begin{pmatrix} x \cdot x + 1 \cdot 1 & x \cdot 1 + 1 \cdot 0 \\ 1 \cdot x + 0 \cdot 1 & 1 \cdot 1 + 0 \cdot 0 \end{pmatrix} \] Simplifying this, we get: \[ A^2 = \begin{pmatrix} x^2 + 1 & x \\ x & 1 \end{pmatrix} \] 2. **Set \( A^2 \) equal to the identity matrix**: The identity matrix \( I \) for a 2x2 matrix is: \[ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] Therefore, we set: \[ \begin{pmatrix} x^2 + 1 & x \\ x & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] 3. **Equate the corresponding elements**: From the equality of matrices, we can derive the following equations: - From the first element: \( x^2 + 1 = 1 \) - From the second element: \( x = 0 \) - From the third element: \( x = 0 \) - From the fourth element: \( 1 = 1 \) (which is always true) 4. **Solve the first equation**: From \( x^2 + 1 = 1 \): \[ x^2 = 1 - 1 = 0 \] Taking the square root of both sides gives: \[ x = 0 \] 5. **Conclusion**: The value of \( x \) that satisfies the condition \( A^2 = I \) is: \[ \boxed{0} \]

To solve the problem, we need to find the value of \( x \) such that the matrix \( A = \begin{pmatrix} x & 1 \\ 1 & 0 \end{pmatrix} \) satisfies the condition \( A^2 = I \), where \( I \) is the identity matrix. ### Step-by-Step Solution: 1. **Calculate \( A^2 \)**: \[ A^2 = A \cdot A = \begin{pmatrix} x & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} x & 1 \\ 1 & 0 \end{pmatrix} \] ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MISCELLANEOUS PROBLEMS|49 Videos
  • MATRICES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET CORNER|18 Videos
  • MATHEMATICAL LOGIC

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET CORNER|22 Videos
  • MHTCET 2007

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MATHEMATICS|50 Videos

Similar Questions

Explore conceptually related problems

If A=[(1,0),(-1,7)] and l is an identity matrix of order 2, then the value of k, if A^(2)=8A+kI , is :

If e^(A) is defined as e^(A)=I+A+A^(2)/(2!)+A^(3)/(3!)+...=1/2 [(f(x),g(x)),(g(x),f(x))] , where A=[(x,x),(x,x)], 0 lt x lt 1 and I is identity matrix, then find the functions f(x) and g(x).

If A= [[1,2],[-3,-4]] and l is the identity matrix of order 2 then A^(2) equals "

Consider a matrix A=[(0,1,2),(0,-3,0),(1,1,1)]. If 6A^(-1)=aA^(2)+bA+cI , where a, b, c in and I is an identity matrix, then a+2b+3c is equal to

If X = [{:(1,-2),(0,3):}] , and I is a 2 xx 2 identity matrix, then X^(2)-2X + 3I equals to which one of the following ?

If A = [(1,0,2),(5,1,x),(1,1,1)] is a singular matrix then x is equal to

If A is a 3xx3 matrix such that A^T = 5A + 2I , where A^T is the transpose of A and I is the 3xx3 identity matrix, then there exist a column matrix X=[[x],[y],[z]]!=[[0],[0],[0]] then AX is equal to

(C) equal to In1f for a matrix A, A? +| =0 where I is the identity matrix, then A equale1 0(A) o 1© @ :?-1 01(C)1 1c1 27[o -1

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-MATRICES-MHT CET CORNER
  1. If A=[(x,1),(1,0)] and A^(2) is the identity matrix, then x is equal t...

    Text Solution

    |

  2. If A=[(1,1,0),(2,1,5),(1,2,1)] then a(11)A(21)+a(12)A(22)+a(13)A(23) i...

    Text Solution

    |

  3. If A=[(2,2),(-3,2)], B=[(0,-1),(1,0)] then (B^(-1)A^(-1))^(-1) is equa...

    Text Solution

    |

  4. If matrix A=[(1,2),(4,3)], such that AX=l, then X is equal to

    Text Solution

    |

  5. The multiplicative inverse of A = [(cos theta,-sin theta),(sin theta,c...

    Text Solution

    |

  6. The value of a for which system of equation , a^3x+(a+1)^3y+(a+2)^3z=0...

    Text Solution

    |

  7. Let A=[(cos theta, -sin theta),(- sin theta,-cos theta)] then the inve...

    Text Solution

    |

  8. If matrix A=[(a,b),(c,d)], then |A|^(-1) is equal to

    Text Solution

    |

  9. If A=[(3,2,4),(1,2,1),(3,2,6)] and A(ij) are the cofactors of a(ij), t...

    Text Solution

    |

  10. A=[(cos theta, -sin theta),(sin theta, cos theta)] and AB=BA=l, then B...

    Text Solution

    |

  11. The inverse matrix of A=[(0,1,2),(1,2,3),(3,1,1)] is

    Text Solution

    |

  12. The solutiion of (x,y,z) the equation [(-1,0,1),(-1,1,0),(0,-1,1)][(x)...

    Text Solution

    |

  13. For the system of equaltions : x+2y+3z=1 2x+y+3z=2 5x+5y+9z=4

    Text Solution

    |

  14. If A=[(cos^(2)alpha, cos alpha sin alpha),(cos alpha sin alpha, sin^(2...

    Text Solution

    |

  15. If A(alpha)=[(cos alpha, sin alpha),(-sin alpha, cos alpha)] then the ...

    Text Solution

    |

  16. If A=[(1,-1),(2,-1)] and B=[(1,a),(4,b)] and (A+B)^(2)=A^(2)+B^(2). ...

    Text Solution

    |

  17. If A+I=[(3,-2),(4,1)] then (A+I)(A-I) is equal to

    Text Solution

    |

  18. If A=[(x,y,z)],B=[(a,h,g),(h,b,f),(g,f,c)] and C=[(x),(y),(z)] Then ...

    Text Solution

    |

  19. If A=[(-2,4),(-1,2)] then A^(2) is equal to

    Text Solution

    |