Home
Class 12
MATHS
If A=[(1,2,2),(2,1,2),(2,2,1)] then A^(2...

If `A=[(1,2,2),(2,1,2),(2,2,1)]` then `A^(2)-4A` is equal to

A

`2l_(3)`

B

`3l_(3)`

C

`4l_(3)`

D

`5l_(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to compute \( A^2 - 4A \) for the matrix \( A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix} \). ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we multiply matrix \( A \) by itself: \[ A^2 = A \times A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix} \] Calculating each element of the resulting matrix: - First row, first column: \[ 1 \cdot 1 + 2 \cdot 2 + 2 \cdot 2 = 1 + 4 + 4 = 9 \] - First row, second column: \[ 1 \cdot 2 + 2 \cdot 1 + 2 \cdot 2 = 2 + 2 + 4 = 8 \] - First row, third column: \[ 1 \cdot 2 + 2 \cdot 2 + 2 \cdot 1 = 2 + 4 + 2 = 8 \] - Second row, first column: \[ 2 \cdot 1 + 1 \cdot 2 + 2 \cdot 2 = 2 + 2 + 4 = 8 \] - Second row, second column: \[ 2 \cdot 2 + 1 \cdot 1 + 2 \cdot 2 = 4 + 1 + 4 = 9 \] - Second row, third column: \[ 2 \cdot 2 + 1 \cdot 2 + 2 \cdot 1 = 4 + 2 + 2 = 8 \] - Third row, first column: \[ 2 \cdot 1 + 2 \cdot 2 + 1 \cdot 2 = 2 + 4 + 2 = 8 \] - Third row, second column: \[ 2 \cdot 2 + 2 \cdot 1 + 1 \cdot 2 = 4 + 2 + 2 = 8 \] - Third row, third column: \[ 2 \cdot 2 + 2 \cdot 2 + 1 \cdot 1 = 4 + 4 + 1 = 9 \] Thus, we have: \[ A^2 = \begin{pmatrix} 9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9 \end{pmatrix} \] ### Step 2: Calculate \( 4A \) Next, we compute \( 4A \): \[ 4A = 4 \times \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 4 & 8 & 8 \\ 8 & 4 & 8 \\ 8 & 8 & 4 \end{pmatrix} \] ### Step 3: Calculate \( A^2 - 4A \) Now we subtract \( 4A \) from \( A^2 \): \[ A^2 - 4A = \begin{pmatrix} 9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9 \end{pmatrix} - \begin{pmatrix} 4 & 8 & 8 \\ 8 & 4 & 8 \\ 8 & 8 & 4 \end{pmatrix} \] Calculating each element: - First row, first column: \[ 9 - 4 = 5 \] - First row, second column: \[ 8 - 8 = 0 \] - First row, third column: \[ 8 - 8 = 0 \] - Second row, first column: \[ 8 - 8 = 0 \] - Second row, second column: \[ 9 - 4 = 5 \] - Second row, third column: \[ 8 - 8 = 0 \] - Third row, first column: \[ 8 - 8 = 0 \] - Third row, second column: \[ 8 - 8 = 0 \] - Third row, third column: \[ 9 - 4 = 5 \] Thus, we have: \[ A^2 - 4A = \begin{pmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{pmatrix} \] ### Final Result The result can be expressed as: \[ A^2 - 4A = 5I_3 \] where \( I_3 \) is the \( 3 \times 3 \) identity matrix.

To solve the problem, we need to compute \( A^2 - 4A \) for the matrix \( A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix} \). ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we multiply matrix \( A \) by itself: \[ A^2 = A \times A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MISCELLANEOUS PROBLEMS|49 Videos
  • MATRICES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET CORNER|18 Videos
  • MATHEMATICAL LOGIC

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET CORNER|22 Videos
  • MHTCET 2007

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MATHEMATICS|50 Videos

Similar Questions

Explore conceptually related problems

(1/2)^-(4) is equal to

If A=[(-2,4),(-1,2)] then A^(2) is equal to

If A=[[-1,(3)/(2)],[-(1)/(2),(1)/(2)]] then A^(2) is equal to

If A=[[1,2],[-1,-2]] then A^(2) is equal to

If A =[(1,2),(3,4)] then A^(2)-5A equals

If A=|{:(1,2,2),(2,1,2),(2,2,1):}| , then show that A^(2)-4A-5I_(3)=0 . Hemce find A^(-1) .

If A=[{:(1,2,2),(2,1,2),(2,2,1):}] , prove that A^(2)-4A-5I=O and hence, obtain A^(-1) .

If A=[[1,2],[-1,-2]] then A^2 is equal to

If A=[(1,-2,1),(2,1,3)] and B=[(2,1),(3,2),(1,1)] then (AB)' is equal to

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-MATRICES-MHT CET CORNER
  1. If A=[(1,2,2),(2,1,2),(2,2,1)] then A^(2)-4A is equal to

    Text Solution

    |

  2. If A=[(1,1,0),(2,1,5),(1,2,1)] then a(11)A(21)+a(12)A(22)+a(13)A(23) i...

    Text Solution

    |

  3. If A=[(2,2),(-3,2)], B=[(0,-1),(1,0)] then (B^(-1)A^(-1))^(-1) is equa...

    Text Solution

    |

  4. If matrix A=[(1,2),(4,3)], such that AX=l, then X is equal to

    Text Solution

    |

  5. The multiplicative inverse of A = [(cos theta,-sin theta),(sin theta,c...

    Text Solution

    |

  6. The value of a for which system of equation , a^3x+(a+1)^3y+(a+2)^3z=0...

    Text Solution

    |

  7. Let A=[(cos theta, -sin theta),(- sin theta,-cos theta)] then the inve...

    Text Solution

    |

  8. If matrix A=[(a,b),(c,d)], then |A|^(-1) is equal to

    Text Solution

    |

  9. If A=[(3,2,4),(1,2,1),(3,2,6)] and A(ij) are the cofactors of a(ij), t...

    Text Solution

    |

  10. A=[(cos theta, -sin theta),(sin theta, cos theta)] and AB=BA=l, then B...

    Text Solution

    |

  11. The inverse matrix of A=[(0,1,2),(1,2,3),(3,1,1)] is

    Text Solution

    |

  12. The solutiion of (x,y,z) the equation [(-1,0,1),(-1,1,0),(0,-1,1)][(x)...

    Text Solution

    |

  13. For the system of equaltions : x+2y+3z=1 2x+y+3z=2 5x+5y+9z=4

    Text Solution

    |

  14. If A=[(cos^(2)alpha, cos alpha sin alpha),(cos alpha sin alpha, sin^(2...

    Text Solution

    |

  15. If A(alpha)=[(cos alpha, sin alpha),(-sin alpha, cos alpha)] then the ...

    Text Solution

    |

  16. If A=[(1,-1),(2,-1)] and B=[(1,a),(4,b)] and (A+B)^(2)=A^(2)+B^(2). ...

    Text Solution

    |

  17. If A+I=[(3,-2),(4,1)] then (A+I)(A-I) is equal to

    Text Solution

    |

  18. If A=[(x,y,z)],B=[(a,h,g),(h,b,f),(g,f,c)] and C=[(x),(y),(z)] Then ...

    Text Solution

    |

  19. If A=[(-2,4),(-1,2)] then A^(2) is equal to

    Text Solution

    |