Home
Class 12
MATHS
If A=[(1,1),(1,1)] ,then A^(100) is equa...

If `A=[(1,1),(1,1)]` ,then `A^(100)` is equal to

A

`2^(100)A`

B

`2^(99)A`

C

`100A`

D

`299A`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( A^{100} \) for the matrix \( A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \), we can follow these steps: ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we multiply matrix \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \] Calculating the elements: - First row, first column: \( 1 \cdot 1 + 1 \cdot 1 = 2 \) - First row, second column: \( 1 \cdot 1 + 1 \cdot 1 = 2 \) - Second row, first column: \( 1 \cdot 1 + 1 \cdot 1 = 2 \) - Second row, second column: \( 1 \cdot 1 + 1 \cdot 1 = 2 \) Thus, \[ A^2 = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix} = 2A \] ### Step 2: Calculate \( A^4 \) Now, we can find \( A^4 \) by squaring \( A^2 \): \[ A^4 = A^2 \cdot A^2 = (2A) \cdot (2A) = 4A^2 \] Substituting \( A^2 = 2A \): \[ A^4 = 4(2A) = 8A \] ### Step 3: Generalize \( A^{2^n} \) From the calculations, we can see a pattern: - \( A^2 = 2A \) - \( A^4 = 8A = 2^3 A \) We can generalize this for \( A^{2^n} \): \[ A^{2^n} = 2^{n+1} A \] ### Step 4: Calculate \( A^{100} \) We can express \( 100 \) as \( 2^6 + 36 \) (since \( 100 = 64 + 36 \)), which means we can write: \[ A^{100} = A^{64} \cdot A^{36} \] Using our general formula for \( A^{64} \): \[ A^{64} = 2^{64/2 + 1} A = 2^{33} A \] Now we need to find \( A^{36} \). We can express \( 36 \) as \( 2^5 + 4 \) (since \( 36 = 32 + 4 \)): \[ A^{36} = A^{32} \cdot A^4 \] Using our general formula for \( A^{32} \): \[ A^{32} = 2^{32/2 + 1} A = 2^{17} A \] Thus, \[ A^{36} = (2^{17} A) \cdot (8A) = 2^{17} \cdot 8 A^2 = 2^{17} \cdot 2^3 A = 2^{20} A \] ### Final Calculation Now substituting back: \[ A^{100} = A^{64} \cdot A^{36} = (2^{33} A) \cdot (2^{20} A) = 2^{33 + 20} A^2 = 2^{53} A^2 \] Since \( A^2 = 2A \): \[ A^{100} = 2^{53} \cdot 2A = 2^{54} A \] So, the final result is: \[ A^{100} = 2^{54} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \] ### Summary Thus, \( A^{100} = 2^{54} A \).

To find \( A^{100} \) for the matrix \( A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \), we can follow these steps: ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we multiply matrix \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \] ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MISCELLANEOUS PROBLEMS|49 Videos
  • MATRICES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET CORNER|18 Videos
  • MATHEMATICAL LOGIC

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET CORNER|22 Videos
  • MHTCET 2007

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MATHEMATICS|50 Videos

Similar Questions

Explore conceptually related problems

If A=[[1,0(1)/(2),1]], then A^(100) is equal to

If A= [(1,-1),(-1,1)] ,then A^(2) equals

If A=[(1,0,0),(0,1,0),(a,b,-1)] then A^2 is equal to (A) null matrix (B) unit matrix (C) -A (D) A

If A=[(1,0,0),(0,1,0),(1,b,-10] then A^2 is equal is (A) unit matrix (B) null matrix (C) A (D) -A

If {:A=[(1,0,0),(0,1,0),(a,b,-1)]:} , then A^2 is equal to

If A= [[1,1],[-1,1]] , then A^(2) equals

If A^(-1)=[[2,1],[1,1]] , then A is equal to

If A=[(1,-1,0),(1,0,0),(0,0,-1)] , then A^(-1) is

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-MATRICES-MHT CET CORNER
  1. If A=[(1,1),(1,1)] ,then A^(100) is equal to

    Text Solution

    |

  2. If A=[(1,1,0),(2,1,5),(1,2,1)] then a(11)A(21)+a(12)A(22)+a(13)A(23) i...

    Text Solution

    |

  3. If A=[(2,2),(-3,2)], B=[(0,-1),(1,0)] then (B^(-1)A^(-1))^(-1) is equa...

    Text Solution

    |

  4. If matrix A=[(1,2),(4,3)], such that AX=l, then X is equal to

    Text Solution

    |

  5. The multiplicative inverse of A = [(cos theta,-sin theta),(sin theta,c...

    Text Solution

    |

  6. The value of a for which system of equation , a^3x+(a+1)^3y+(a+2)^3z=0...

    Text Solution

    |

  7. Let A=[(cos theta, -sin theta),(- sin theta,-cos theta)] then the inve...

    Text Solution

    |

  8. If matrix A=[(a,b),(c,d)], then |A|^(-1) is equal to

    Text Solution

    |

  9. If A=[(3,2,4),(1,2,1),(3,2,6)] and A(ij) are the cofactors of a(ij), t...

    Text Solution

    |

  10. A=[(cos theta, -sin theta),(sin theta, cos theta)] and AB=BA=l, then B...

    Text Solution

    |

  11. The inverse matrix of A=[(0,1,2),(1,2,3),(3,1,1)] is

    Text Solution

    |

  12. The solutiion of (x,y,z) the equation [(-1,0,1),(-1,1,0),(0,-1,1)][(x)...

    Text Solution

    |

  13. For the system of equaltions : x+2y+3z=1 2x+y+3z=2 5x+5y+9z=4

    Text Solution

    |

  14. If A=[(cos^(2)alpha, cos alpha sin alpha),(cos alpha sin alpha, sin^(2...

    Text Solution

    |

  15. If A(alpha)=[(cos alpha, sin alpha),(-sin alpha, cos alpha)] then the ...

    Text Solution

    |

  16. If A=[(1,-1),(2,-1)] and B=[(1,a),(4,b)] and (A+B)^(2)=A^(2)+B^(2). ...

    Text Solution

    |

  17. If A+I=[(3,-2),(4,1)] then (A+I)(A-I) is equal to

    Text Solution

    |

  18. If A=[(x,y,z)],B=[(a,h,g),(h,b,f),(g,f,c)] and C=[(x),(y),(z)] Then ...

    Text Solution

    |

  19. If A=[(-2,4),(-1,2)] then A^(2) is equal to

    Text Solution

    |