Home
Class 12
MATHS
If [(1,-1,x),(1,x,1),(x,-1,1)] has no in...

If `[(1,-1,x),(1,x,1),(x,-1,1)]` has no inverse, then the real value of `x` is

A

2

B

3

C

0

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To determine the real value of \( x \) such that the matrix \[ A = \begin{pmatrix} 1 & -1 & x \\ 1 & x & 1 \\ x & -1 & 1 \end{pmatrix} \] has no inverse, we need to find when the determinant of the matrix is equal to zero. A matrix has no inverse if it is singular, which occurs when its determinant is zero. ### Step 1: Calculate the Determinant The determinant of a 3x3 matrix \[ \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \] is given by the formula: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix \( A \): - \( a = 1, b = -1, c = x \) - \( d = 1, e = x, f = 1 \) - \( g = x, h = -1, i = 1 \) Substituting these values into the determinant formula: \[ \text{det}(A) = 1 \cdot (x \cdot 1 - 1 \cdot (-1)) - (-1) \cdot (1 \cdot 1 - 1 \cdot x) + x \cdot (1 \cdot (-1) - x \cdot x) \] ### Step 2: Simplify the Determinant Calculating each term: 1. First term: \[ 1 \cdot (x + 1) = x + 1 \] 2. Second term: \[ -(-1) \cdot (1 - x) = 1 - x \] 3. Third term: \[ x \cdot (-1 - x^2) = -x - x^3 \] Combining these results, we have: \[ \text{det}(A) = (x + 1) + (1 - x) + (-x - x^3) \] ### Step 3: Combine Like Terms Now, combine the terms: \[ \text{det}(A) = x + 1 + 1 - x - x - x^3 = 2 - x - x^3 \] ### Step 4: Set the Determinant to Zero For the matrix to have no inverse, we set the determinant to zero: \[ 2 - x - x^3 = 0 \] Rearranging gives: \[ x^3 + x - 2 = 0 \] ### Step 5: Solve the Polynomial Equation To find the real value of \( x \), we can use the Rational Root Theorem or trial and error to find possible rational roots. Testing \( x = 1 \): \[ 1^3 + 1 - 2 = 1 + 1 - 2 = 0 \] Thus, \( x = 1 \) is a root. ### Step 6: Factor the Polynomial Now we can factor \( x^3 + x - 2 \) using \( (x - 1) \): Using synthetic division or polynomial long division, we find: \[ x^3 + x - 2 = (x - 1)(x^2 + x + 2) \] ### Step 7: Analyze the Quadratic Factor The quadratic \( x^2 + x + 2 \) has no real roots (discriminant \( b^2 - 4ac = 1 - 8 < 0 \)). Therefore, the only real solution is: \[ x = 1 \] ### Conclusion Thus, the real value of \( x \) such that the matrix has no inverse is: \[ \boxed{1} \]

To determine the real value of \( x \) such that the matrix \[ A = \begin{pmatrix} 1 & -1 & x \\ 1 & x & 1 \\ x & -1 & 1 \end{pmatrix} \] has no inverse, we need to find when the determinant of the matrix is equal to zero. A matrix has no inverse if it is singular, which occurs when its determinant is zero. ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MISCELLANEOUS PROBLEMS|49 Videos
  • MATRICES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET CORNER|18 Videos
  • MATHEMATICAL LOGIC

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET CORNER|22 Videos
  • MHTCET 2007

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MATHEMATICS|50 Videos

Similar Questions

Explore conceptually related problems

If [[x, 1, 1], [2, 3, 4], [1, 1, 1]] has no inverse, then x=

If f(x)=(x^2-1)/(x^2+1) , for every real x , then the maximum value of f

The matrix A=[{:(1,3,2),(1,x-1,1),(2,7,x-3):}] will have inverse for every real number x except for

If |{:(x+1,1,1),(1,x+1,1),(-1,1,x+1):}|=0 , find the value of 'x'.

If the equation (x^(2)+a|x|+a+1)(x^(2)+(a+1)|x|+a)=0 has no real root,then the range of values of a is

Let y^(2) = ((x+5)(x-3))/(x-1) , then all the real values of x, for which y has non-zero real values , are :

Let y=sqrt(2/(x^(2)-x+1)-1/(x+1)-(2x+1)/(x^(3)+1)) , find all the real values of x for which y takes real values.

If (x^(3)+x^(2)+x+1)/(x^(3)-x^(2)+x-1)=(x^(2)+x+1)/(x^(2)-x+1), then the number of real value of x satisfying are

If the two roots (a-1)(x^(4)+x^(2)+1)+(a+1)(x^(2)+x+1)^(2)=0 are real and distinct,then the set of all values of 'a ' is.....

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-MATRICES-MHT CET CORNER
  1. If [(1,-1,x),(1,x,1),(x,-1,1)] has no inverse, then the real value of ...

    Text Solution

    |

  2. If A=[(1,1,0),(2,1,5),(1,2,1)] then a(11)A(21)+a(12)A(22)+a(13)A(23) i...

    Text Solution

    |

  3. If A=[(2,2),(-3,2)], B=[(0,-1),(1,0)] then (B^(-1)A^(-1))^(-1) is equa...

    Text Solution

    |

  4. If matrix A=[(1,2),(4,3)], such that AX=l, then X is equal to

    Text Solution

    |

  5. The multiplicative inverse of A = [(cos theta,-sin theta),(sin theta,c...

    Text Solution

    |

  6. The value of a for which system of equation , a^3x+(a+1)^3y+(a+2)^3z=0...

    Text Solution

    |

  7. Let A=[(cos theta, -sin theta),(- sin theta,-cos theta)] then the inve...

    Text Solution

    |

  8. If matrix A=[(a,b),(c,d)], then |A|^(-1) is equal to

    Text Solution

    |

  9. If A=[(3,2,4),(1,2,1),(3,2,6)] and A(ij) are the cofactors of a(ij), t...

    Text Solution

    |

  10. A=[(cos theta, -sin theta),(sin theta, cos theta)] and AB=BA=l, then B...

    Text Solution

    |

  11. The inverse matrix of A=[(0,1,2),(1,2,3),(3,1,1)] is

    Text Solution

    |

  12. The solutiion of (x,y,z) the equation [(-1,0,1),(-1,1,0),(0,-1,1)][(x)...

    Text Solution

    |

  13. For the system of equaltions : x+2y+3z=1 2x+y+3z=2 5x+5y+9z=4

    Text Solution

    |

  14. If A=[(cos^(2)alpha, cos alpha sin alpha),(cos alpha sin alpha, sin^(2...

    Text Solution

    |

  15. If A(alpha)=[(cos alpha, sin alpha),(-sin alpha, cos alpha)] then the ...

    Text Solution

    |

  16. If A=[(1,-1),(2,-1)] and B=[(1,a),(4,b)] and (A+B)^(2)=A^(2)+B^(2). ...

    Text Solution

    |

  17. If A+I=[(3,-2),(4,1)] then (A+I)(A-I) is equal to

    Text Solution

    |

  18. If A=[(x,y,z)],B=[(a,h,g),(h,b,f),(g,f,c)] and C=[(x),(y),(z)] Then ...

    Text Solution

    |

  19. If A=[(-2,4),(-1,2)] then A^(2) is equal to

    Text Solution

    |