Home
Class 12
MATHS
If A=[(2x,0),(x,x)] and A^(-1)=[(1,0),(-...

If `A=[(2x,0),(x,x)]` and `A^(-1)=[(1,0),(-1,2)]` then x equals to

A

2

B

`-1/2`

C

1

D

`1/2`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( x \) in the given matrices \( A \) and \( A^{-1} \), we will follow these steps: Given: \[ A = \begin{pmatrix} 2x & 0 \\ x & x \end{pmatrix}, \quad A^{-1} = \begin{pmatrix} 1 & 0 \\ -1 & 2 \end{pmatrix} \] ### Step 1: Multiply \( A \) and \( A^{-1} \) We know that the product of a matrix and its inverse is the identity matrix \( I \): \[ A \cdot A^{-1} = I \] The identity matrix \( I \) for a \( 2 \times 2 \) matrix is: \[ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] ### Step 2: Calculate the product \( A \cdot A^{-1} \) Now we will calculate the product \( A \cdot A^{-1} \): \[ A \cdot A^{-1} = \begin{pmatrix} 2x & 0 \\ x & x \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ -1 & 2 \end{pmatrix} \] Calculating the elements of the resulting matrix: - First row, first column: \[ (2x \cdot 1) + (0 \cdot -1) = 2x \] - First row, second column: \[ (2x \cdot 0) + (0 \cdot 2) = 0 \] - Second row, first column: \[ (x \cdot 1) + (x \cdot -1) = x - x = 0 \] - Second row, second column: \[ (x \cdot 0) + (x \cdot 2) = 2x \] Thus, we have: \[ A \cdot A^{-1} = \begin{pmatrix} 2x & 0 \\ 0 & 2x \end{pmatrix} \] ### Step 3: Set the product equal to the identity matrix Now we set the product equal to the identity matrix: \[ \begin{pmatrix} 2x & 0 \\ 0 & 2x \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] ### Step 4: Solve for \( x \) From the equality of the matrices, we can compare corresponding elements: 1. From the first element: \[ 2x = 1 \implies x = \frac{1}{2} \] 2. From the second element: \[ 2x = 1 \implies x = \frac{1}{2} \] Both comparisons give the same result. ### Final Answer Thus, the value of \( x \) is: \[ \boxed{\frac{1}{2}} \]

To find the value of \( x \) in the given matrices \( A \) and \( A^{-1} \), we will follow these steps: Given: \[ A = \begin{pmatrix} 2x & 0 \\ x & x \end{pmatrix}, \quad A^{-1} = \begin{pmatrix} 1 & 0 \\ -1 & 2 \end{pmatrix} \] ### Step 1: Multiply \( A \) and \( A^{-1} \) ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MISCELLANEOUS PROBLEMS|49 Videos
  • MATRICES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET CORNER|18 Videos
  • MATHEMATICAL LOGIC

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET CORNER|22 Videos
  • MHTCET 2007

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MATHEMATICS|50 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(2x,0),(x,x):}]and A^(-1)=[{:(1,0),(-1,2):}] , then what is the value of x ?

If A=[(2,1),(0,x)] and A^(-1)=[(1/2,1/6),(0,1/x)] , then the value of x is equal to

If [(x,1)][(1,0),(-2,0)] = 0, then x equals

If A=[[x,1]][[1,0],[-2,0]] =0 , then x is equals to

Suppose the vectors x_(1), x_(2) and x_(3) are the solutions of the system of linear equations, Ax=b when the vector b on the right side is equal to b_(1), b_(2) and b_(3) respectively. If x_(1)=[(1),(1),(1)], x_(2)=[(0),(2),(1)], x_(3)=[(0),(0),(1)], b_(1)=[(1),(0),(0)], b_(2)=[(0),(2),(0)] and b_(3)=[(0),(0),(2)] , then the determinant of A is equal to :

If A=[(x,1),(1,0)] and A^(2) is the identity matrix, then x is equal to

If A[(1, 0, 0),(x, 1, 0),(x, x, 1)] and I=[(1, 0, 0),(0,1,0),(0,0,1)] , then A^(3)-3A^(2)+3A is equal to

int_(0)^(10)|x(x-1)(x-2)|dx is equal to

int_(0)^(10)|x(x-1)(x-2)|dx is equal to

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-MATRICES-MHT CET CORNER
  1. If A=[(2x,0),(x,x)] and A^(-1)=[(1,0),(-1,2)] then x equals to

    Text Solution

    |

  2. If A=[(1,1,0),(2,1,5),(1,2,1)] then a(11)A(21)+a(12)A(22)+a(13)A(23) i...

    Text Solution

    |

  3. If A=[(2,2),(-3,2)], B=[(0,-1),(1,0)] then (B^(-1)A^(-1))^(-1) is equa...

    Text Solution

    |

  4. If matrix A=[(1,2),(4,3)], such that AX=l, then X is equal to

    Text Solution

    |

  5. The multiplicative inverse of A = [(cos theta,-sin theta),(sin theta,c...

    Text Solution

    |

  6. The value of a for which system of equation , a^3x+(a+1)^3y+(a+2)^3z=0...

    Text Solution

    |

  7. Let A=[(cos theta, -sin theta),(- sin theta,-cos theta)] then the inve...

    Text Solution

    |

  8. If matrix A=[(a,b),(c,d)], then |A|^(-1) is equal to

    Text Solution

    |

  9. If A=[(3,2,4),(1,2,1),(3,2,6)] and A(ij) are the cofactors of a(ij), t...

    Text Solution

    |

  10. A=[(cos theta, -sin theta),(sin theta, cos theta)] and AB=BA=l, then B...

    Text Solution

    |

  11. The inverse matrix of A=[(0,1,2),(1,2,3),(3,1,1)] is

    Text Solution

    |

  12. The solutiion of (x,y,z) the equation [(-1,0,1),(-1,1,0),(0,-1,1)][(x)...

    Text Solution

    |

  13. For the system of equaltions : x+2y+3z=1 2x+y+3z=2 5x+5y+9z=4

    Text Solution

    |

  14. If A=[(cos^(2)alpha, cos alpha sin alpha),(cos alpha sin alpha, sin^(2...

    Text Solution

    |

  15. If A(alpha)=[(cos alpha, sin alpha),(-sin alpha, cos alpha)] then the ...

    Text Solution

    |

  16. If A=[(1,-1),(2,-1)] and B=[(1,a),(4,b)] and (A+B)^(2)=A^(2)+B^(2). ...

    Text Solution

    |

  17. If A+I=[(3,-2),(4,1)] then (A+I)(A-I) is equal to

    Text Solution

    |

  18. If A=[(x,y,z)],B=[(a,h,g),(h,b,f),(g,f,c)] and C=[(x),(y),(z)] Then ...

    Text Solution

    |

  19. If A=[(-2,4),(-1,2)] then A^(2) is equal to

    Text Solution

    |