Home
Class 12
MATHS
The matrix A satisfying the equation [(1...

The matrix A satisfying the equation `[(1,3),(0,1)]A=[(1,1),(0,-1)]` is

A

`[(1,4),(-1,0)]`

B

`[(1,-4),(1,0)]`

C

`[(1,4),(0,-1)]`

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To find the matrix \( A \) that satisfies the equation \[ \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix} A = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}, \] we will denote the matrix \( A \) as \[ A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}. \] ### Step 1: Set up the equation We start by multiplying the two matrices on the left side: \[ \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}. \] ### Step 2: Perform the matrix multiplication Now, we perform the multiplication: \[ \begin{pmatrix} 1 \cdot a + 3 \cdot c & 1 \cdot b + 3 \cdot d \\ 0 \cdot a + 1 \cdot c & 0 \cdot b + 1 \cdot d \end{pmatrix} = \begin{pmatrix} a + 3c & b + 3d \\ c & d \end{pmatrix}. \] ### Step 3: Set up the system of equations Now we equate the resulting matrix to the right-hand side: 1. \( a + 3c = 1 \) (from the first row, first column) 2. \( b + 3d = 1 \) (from the first row, second column) 3. \( c = 0 \) (from the second row, first column) 4. \( d = -1 \) (from the second row, second column) ### Step 4: Solve the equations From equation (3), we have: \[ c = 0. \] Substituting \( c = 0 \) into equation (1): \[ a + 3(0) = 1 \implies a = 1. \] From equation (4), we have: \[ d = -1. \] Substituting \( d = -1 \) into equation (2): \[ b + 3(-1) = 1 \implies b - 3 = 1 \implies b = 4. \] ### Step 5: Write the final matrix Now we have all the values: \[ a = 1, \quad b = 4, \quad c = 0, \quad d = -1. \] Thus, the matrix \( A \) is: \[ A = \begin{pmatrix} 1 & 4 \\ 0 & -1 \end{pmatrix}. \] ### Final Answer The matrix \( A \) satisfying the equation is \[ \begin{pmatrix} 1 & 4 \\ 0 & -1 \end{pmatrix}. \] ---

To find the matrix \( A \) that satisfies the equation \[ \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix} A = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}, \] we will denote the matrix \( A \) as ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MISCELLANEOUS PROBLEMS|49 Videos
  • MATRICES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET CORNER|18 Videos
  • MATHEMATICAL LOGIC

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET CORNER|22 Videos
  • MHTCET 2007

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MATHEMATICS|50 Videos

Similar Questions

Explore conceptually related problems

Find the matrix A satisfying the matrix equation, [(2,1),(3,2)].A.[(3,2),(5,-3)]=[(2,4),(3,-1)].

Find the matrix A satisfying the matrix equation [(2, 1),( 3, 2)]A[(-3, 2),( 5,-3)]=[(1, 0 ),(0, 1)] .

The matrix A satisfying A[(1,5),(0,1)]=[(3,-1),(-1,4)] is

Find the matrix A satisfying the matrix equation [2 1 3 2]A[-3 2 5-3]=[1 0 0 1]

The matrix X in the equation AX=B, such that A= [(1,3),(0,1)] and B= [(1,-1),(0,1)] is given by (A) [(1,0),(-3,1)] (B) [(1,-4),0,1)] (C) [(1,-3),(0,1)] (D) [(0,-1),(-3,1)]

Find the matrix A satisfying the matrix equation: [[2,13,2]]]]-3,25,-3]]=[[1,00,1]]

If the matrix A is such that ({:(1,3),(0,1):})A=({:(1,1),(0,-1):}) , then what is A equal to ?

If the matrix A is such that ({:(1,3),(0,1):})A=({:(1,1),(0,-1):}) , then what is A equal to ?

If A is a square matrix satisfying the equation A^(2)-4A-5I=0 , then A^(-1)=

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-MATRICES-MHT CET CORNER
  1. The matrix A satisfying the equation [(1,3),(0,1)]A=[(1,1),(0,-1)] is

    Text Solution

    |

  2. If A=[(1,1,0),(2,1,5),(1,2,1)] then a(11)A(21)+a(12)A(22)+a(13)A(23) i...

    Text Solution

    |

  3. If A=[(2,2),(-3,2)], B=[(0,-1),(1,0)] then (B^(-1)A^(-1))^(-1) is equa...

    Text Solution

    |

  4. If matrix A=[(1,2),(4,3)], such that AX=l, then X is equal to

    Text Solution

    |

  5. The multiplicative inverse of A = [(cos theta,-sin theta),(sin theta,c...

    Text Solution

    |

  6. The value of a for which system of equation , a^3x+(a+1)^3y+(a+2)^3z=0...

    Text Solution

    |

  7. Let A=[(cos theta, -sin theta),(- sin theta,-cos theta)] then the inve...

    Text Solution

    |

  8. If matrix A=[(a,b),(c,d)], then |A|^(-1) is equal to

    Text Solution

    |

  9. If A=[(3,2,4),(1,2,1),(3,2,6)] and A(ij) are the cofactors of a(ij), t...

    Text Solution

    |

  10. A=[(cos theta, -sin theta),(sin theta, cos theta)] and AB=BA=l, then B...

    Text Solution

    |

  11. The inverse matrix of A=[(0,1,2),(1,2,3),(3,1,1)] is

    Text Solution

    |

  12. The solutiion of (x,y,z) the equation [(-1,0,1),(-1,1,0),(0,-1,1)][(x)...

    Text Solution

    |

  13. For the system of equaltions : x+2y+3z=1 2x+y+3z=2 5x+5y+9z=4

    Text Solution

    |

  14. If A=[(cos^(2)alpha, cos alpha sin alpha),(cos alpha sin alpha, sin^(2...

    Text Solution

    |

  15. If A(alpha)=[(cos alpha, sin alpha),(-sin alpha, cos alpha)] then the ...

    Text Solution

    |

  16. If A=[(1,-1),(2,-1)] and B=[(1,a),(4,b)] and (A+B)^(2)=A^(2)+B^(2). ...

    Text Solution

    |

  17. If A+I=[(3,-2),(4,1)] then (A+I)(A-I) is equal to

    Text Solution

    |

  18. If A=[(x,y,z)],B=[(a,h,g),(h,b,f),(g,f,c)] and C=[(x),(y),(z)] Then ...

    Text Solution

    |

  19. If A=[(-2,4),(-1,2)] then A^(2) is equal to

    Text Solution

    |