Home
Class 12
MATHS
If [(2,-1,3),(1,3,-1),(3,2,1)],[(x),(y),...

If `[(2,-1,3),(1,3,-1),(3,2,1)],[(x),(y),(z)]=[(9),(4),(10)]` ,then `[(x),(y),(z)]` is equal to

A

`[(3),(2),(1)]`

B

`[(2),(3),(1)]`

C

`[(1),(2),(3)]`

D

`[(2),(1),(3)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation given by the matrix equation: \[ \begin{pmatrix} 2 & -1 & 3 \\ 1 & 3 & -1 \\ 3 & 2 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 9 \\ 4 \\ 10 \end{pmatrix} \] we will follow these steps: ### Step 1: Define the Matrices Let \( A = \begin{pmatrix} 2 & -1 & 3 \\ 1 & 3 & -1 \\ 3 & 2 & 1 \end{pmatrix} \) and \( B = \begin{pmatrix} 9 \\ 4 \\ 10 \end{pmatrix} \). We need to find the matrix \( X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \). ### Step 2: Find the Inverse of Matrix A The solution can be found using the formula \( X = A^{-1}B \). First, we need to calculate the determinant of \( A \). #### Determinant Calculation: \[ \text{det}(A) = 2 \begin{vmatrix} 3 & -1 \\ 2 & 1 \end{vmatrix} - (-1) \begin{vmatrix} 1 & -1 \\ 3 & 1 \end{vmatrix} + 3 \begin{vmatrix} 1 & 3 \\ 3 & 2 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} 3 & -1 \\ 2 & 1 \end{vmatrix} = (3)(1) - (-1)(2) = 3 + 2 = 5 \) 2. \( \begin{vmatrix} 1 & -1 \\ 3 & 1 \end{vmatrix} = (1)(1) - (-1)(3) = 1 + 3 = 4 \) 3. \( \begin{vmatrix} 1 & 3 \\ 3 & 2 \end{vmatrix} = (1)(2) - (3)(3) = 2 - 9 = -7 \) Now substituting back into the determinant formula: \[ \text{det}(A) = 2(5) + 1(4) + 3(-7) = 10 + 4 - 21 = -7 \] ### Step 3: Calculate the Adjoint of Matrix A Next, we need to find the adjoint of \( A \). The adjoint is the transpose of the cofactor matrix. Calculating the cofactors: 1. For \( A_{11} \): \( C_{11} = \begin{vmatrix} 3 & -1 \\ 2 & 1 \end{vmatrix} = 5 \) 2. For \( A_{12} \): \( C_{12} = -\begin{vmatrix} 1 & -1 \\ 3 & 1 \end{vmatrix} = -4 \) 3. For \( A_{13} \): \( C_{13} = \begin{vmatrix} 1 & 3 \\ 3 & 2 \end{vmatrix} = -7 \) 4. For \( A_{21} \): \( C_{21} = -\begin{vmatrix} -1 & 3 \\ 2 & 1 \end{vmatrix} = -(-1 - 6) = 7 \) 5. For \( A_{22} \): \( C_{22} = \begin{vmatrix} 2 & 3 \\ 3 & 1 \end{vmatrix} = 2 - 9 = -7 \) 6. For \( A_{23} \): \( C_{23} = -\begin{vmatrix} 2 & -1 \\ 3 & 2 \end{vmatrix} = -4 + 3 = 1 \) 7. For \( A_{31} \): \( C_{31} = \begin{vmatrix} -1 & 3 \\ 3 & -1 \end{vmatrix} = 3 + 9 = 12 \) 8. For \( A_{32} \): \( C_{32} = -\begin{vmatrix} 2 & 3 \\ 1 & -1 \end{vmatrix} = -(-2 - 3) = 5 \) 9. For \( A_{33} \): \( C_{33} = \begin{vmatrix} 2 & -1 \\ 1 & 3 \end{vmatrix} = 6 + 1 = 7 \) The cofactor matrix is: \[ \begin{pmatrix} 5 & -4 & -7 \\ 7 & -7 & 1 \\ 12 & 5 & 7 \end{pmatrix} \] The adjoint \( \text{adj}(A) \) is the transpose of the cofactor matrix: \[ \text{adj}(A) = \begin{pmatrix} 5 & 7 & 12 \\ -4 & -7 & 5 \\ -7 & 1 & 7 \end{pmatrix} \] ### Step 4: Calculate the Inverse of Matrix A Now we can find \( A^{-1} \): \[ A^{-1} = \frac{1}{\text{det}(A)} \text{adj}(A) = \frac{1}{-7} \begin{pmatrix} 5 & 7 & 12 \\ -4 & -7 & 5 \\ -7 & 1 & 7 \end{pmatrix} \] ### Step 5: Multiply \( A^{-1} \) by B Now we compute \( X = A^{-1}B \): \[ X = \frac{1}{-7} \begin{pmatrix} 5 & 7 & 12 \\ -4 & -7 & 5 \\ -7 & 1 & 7 \end{pmatrix} \begin{pmatrix} 9 \\ 4 \\ 10 \end{pmatrix} \] Calculating the product: 1. First row: \( 5(9) + 7(4) + 12(10) = 45 + 28 + 120 = 193 \) 2. Second row: \( -4(9) + -7(4) + 5(10) = -36 - 28 + 50 = -14 \) 3. Third row: \( -7(9) + 1(4) + 7(10) = -63 + 4 + 70 = 11 \) Thus, \[ X = \frac{1}{-7} \begin{pmatrix} 193 \\ -14 \\ 11 \end{pmatrix} = \begin{pmatrix} -\frac{193}{7} \\ 2 \\ -\frac{11}{7} \end{pmatrix} \] ### Final Answer The values of \( x, y, z \) are: \[ x = -\frac{193}{7}, \quad y = 2, \quad z = -\frac{11}{7} \]

To solve the equation given by the matrix equation: \[ \begin{pmatrix} 2 & -1 & 3 \\ 1 & 3 & -1 \\ 3 & 2 & 1 \end{pmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MISCELLANEOUS PROBLEMS|49 Videos
  • MATRICES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET CORNER|18 Videos
  • MATHEMATICAL LOGIC

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET CORNER|22 Videos
  • MHTCET 2007

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MATHEMATICS|50 Videos

Similar Questions

Explore conceptually related problems

If [(1,2,-3),(0,4,5),(0,0,1)][(x),(y),(z)]=[(1),(1),(1)] , then (x, y, z) is equal to

If [{:(1,1,1),(1,-2,-2),(1,3,1):}][{:(x),(y),(z):}]=[{:(0),(3),(4):}] , then [{:(x),(y),(z):}] is equal to

If [(1,2,3),(2,4,1),(3,2,9)][(x),(y),(z)]=[(6),(7),(14)] , then the values of x, y, z respectively are

If [(1,3,3),(1,4,4),(1,3,4)][(x),(y),(z)]=[(1),(2),(-3)], then the values of x, y and z respectively are

If [[3,2],[x,1]]=[[z, y],[3,1]] then (x+1,y+1,z+1) is equal to

If [[3,2],[x,1]]=[[z, y],[3,1]] then (x+1,y+1,z+1) is equal to

Use product [{:(1,-1,2),(0,2,-3),(3,-2,4):}][{:(-2,0,1),(9,2,-3),(6,1,-2):}] to solve the equations : x-3z=9 , -x+2y-2z=4 , 2x-3y+4z=-3

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-MATRICES-MHT CET CORNER
  1. If [(2,-1,3),(1,3,-1),(3,2,1)],[(x),(y),(z)]=[(9),(4),(10)] ,then [(x)...

    Text Solution

    |

  2. If A=[(1,1,0),(2,1,5),(1,2,1)] then a(11)A(21)+a(12)A(22)+a(13)A(23) i...

    Text Solution

    |

  3. If A=[(2,2),(-3,2)], B=[(0,-1),(1,0)] then (B^(-1)A^(-1))^(-1) is equa...

    Text Solution

    |

  4. If matrix A=[(1,2),(4,3)], such that AX=l, then X is equal to

    Text Solution

    |

  5. The multiplicative inverse of A = [(cos theta,-sin theta),(sin theta,c...

    Text Solution

    |

  6. The value of a for which system of equation , a^3x+(a+1)^3y+(a+2)^3z=0...

    Text Solution

    |

  7. Let A=[(cos theta, -sin theta),(- sin theta,-cos theta)] then the inve...

    Text Solution

    |

  8. If matrix A=[(a,b),(c,d)], then |A|^(-1) is equal to

    Text Solution

    |

  9. If A=[(3,2,4),(1,2,1),(3,2,6)] and A(ij) are the cofactors of a(ij), t...

    Text Solution

    |

  10. A=[(cos theta, -sin theta),(sin theta, cos theta)] and AB=BA=l, then B...

    Text Solution

    |

  11. The inverse matrix of A=[(0,1,2),(1,2,3),(3,1,1)] is

    Text Solution

    |

  12. The solutiion of (x,y,z) the equation [(-1,0,1),(-1,1,0),(0,-1,1)][(x)...

    Text Solution

    |

  13. For the system of equaltions : x+2y+3z=1 2x+y+3z=2 5x+5y+9z=4

    Text Solution

    |

  14. If A=[(cos^(2)alpha, cos alpha sin alpha),(cos alpha sin alpha, sin^(2...

    Text Solution

    |

  15. If A(alpha)=[(cos alpha, sin alpha),(-sin alpha, cos alpha)] then the ...

    Text Solution

    |

  16. If A=[(1,-1),(2,-1)] and B=[(1,a),(4,b)] and (A+B)^(2)=A^(2)+B^(2). ...

    Text Solution

    |

  17. If A+I=[(3,-2),(4,1)] then (A+I)(A-I) is equal to

    Text Solution

    |

  18. If A=[(x,y,z)],B=[(a,h,g),(h,b,f),(g,f,c)] and C=[(x),(y),(z)] Then ...

    Text Solution

    |

  19. If A=[(-2,4),(-1,2)] then A^(2) is equal to

    Text Solution

    |