Home
Class 12
MATHS
The simultaneous equations Kx+2y-z=1, (K...

The simultaneous equations `Kx+2y-z=1, (K-1)y-2z=2` and `(K+2)z=3` have only one solution, when

A

`K=-2`

B

`K=-1`

C

`K=0`

D

`K=1`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the values of \( K \) for which the simultaneous equations have only one solution, we need to analyze the given equations: 1. \( Kx + 2y - z = 1 \) 2. \( (K - 1)y - 2z = 2 \) 3. \( (K + 2)z = 3 \) ### Step 1: Write the equations in matrix form We can express the system of equations in matrix form \( A \mathbf{x} = \mathbf{b} \), where: \[ A = \begin{bmatrix} K & 2 & -1 \\ 0 & K - 1 & -2 \\ 0 & 0 & K + 2 \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \] ### Step 2: Find the determinant of matrix \( A \) For the system to have a unique solution, the determinant of matrix \( A \) must be non-zero. We calculate the determinant: \[ \text{det}(A) = K \cdot \text{det}\begin{bmatrix} K - 1 & -2 \\ 0 & K + 2 \end{bmatrix} \] Calculating the determinant of the 2x2 matrix: \[ \text{det}\begin{bmatrix} K - 1 & -2 \\ 0 & K + 2 \end{bmatrix} = (K - 1)(K + 2) - (0)(-2) = (K - 1)(K + 2) \] Thus, we have: \[ \text{det}(A) = K \cdot (K - 1)(K + 2) \] ### Step 3: Set the determinant not equal to zero For the system to have a unique solution, we set the determinant not equal to zero: \[ K \cdot (K - 1)(K + 2) \neq 0 \] ### Step 4: Solve the inequality This inequality implies: 1. \( K \neq 0 \) 2. \( K - 1 \neq 0 \) → \( K \neq 1 \) 3. \( K + 2 \neq 0 \) → \( K \neq -2 \) ### Conclusion The values of \( K \) for which the system has only one solution are: - \( K \neq 0 \) - \( K \neq 1 \) - \( K \neq -2 \)

To determine the values of \( K \) for which the simultaneous equations have only one solution, we need to analyze the given equations: 1. \( Kx + 2y - z = 1 \) 2. \( (K - 1)y - 2z = 2 \) 3. \( (K + 2)z = 3 \) ### Step 1: Write the equations in matrix form ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MISCELLANEOUS PROBLEMS|49 Videos
  • MATRICES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET CORNER|18 Videos
  • MATHEMATICAL LOGIC

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET CORNER|22 Videos
  • MHTCET 2007

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MATHEMATICS|50 Videos

Similar Questions

Explore conceptually related problems

The system of equations (a+1)x+2y-z=1, ay-2z=2 and (a+2)z=3 have only one solution then a=

The system of equations (a+1)x+2y-z=1,ay -2z=2 and (a+2)z=3 have only one solution then a=

The system of simulataneous equations kx + 2y -z = 1 (k -1) y -2z = 2 (k +2) z = 3 have a unique solution if k equals

if the system of equations x+y+z=0 , x+3y+k^2z=0 and x+2y+z=0 have a non zero solution then value of y+(x/z) is

Let the system of linear equations 2x+3y-z=0,2x+ky-3z=0 and 2x-y+z=0 have non trivial solution then (x)/(y)+(y)/(z)+(z)/(x)+k will be

If the system of equations kx + y + 2z = 1 3x-y-2z = 2 -2x-2y-4z = 3 has infinitely many solutions, then k is equal to ________.

If the system of equation {:(,x-2y+z=a),(2x+y-2z=b),and,(x+3y-3z=c):} have at least one solution, then

System of linear equations in x,y,z 2x+y+z=1,x-2y+z=2,3x-y +2z=3 have infinite solutions which

The equations x+y-2z=0,2x-3y-z=0,x-5y+4z=k have non-zero solutions if k=

The number of integral value(s) of k such that the system of equations kz-2y-z=x, ky-z=z+3x and 2x+kz=2y-z has non - trivial solution, is/are

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-MATRICES-MHT CET CORNER
  1. The simultaneous equations Kx+2y-z=1, (K-1)y-2z=2 and (K+2)z=3 have on...

    Text Solution

    |

  2. If A=[(1,1,0),(2,1,5),(1,2,1)] then a(11)A(21)+a(12)A(22)+a(13)A(23) i...

    Text Solution

    |

  3. If A=[(2,2),(-3,2)], B=[(0,-1),(1,0)] then (B^(-1)A^(-1))^(-1) is equa...

    Text Solution

    |

  4. If matrix A=[(1,2),(4,3)], such that AX=l, then X is equal to

    Text Solution

    |

  5. The multiplicative inverse of A = [(cos theta,-sin theta),(sin theta,c...

    Text Solution

    |

  6. The value of a for which system of equation , a^3x+(a+1)^3y+(a+2)^3z=0...

    Text Solution

    |

  7. Let A=[(cos theta, -sin theta),(- sin theta,-cos theta)] then the inve...

    Text Solution

    |

  8. If matrix A=[(a,b),(c,d)], then |A|^(-1) is equal to

    Text Solution

    |

  9. If A=[(3,2,4),(1,2,1),(3,2,6)] and A(ij) are the cofactors of a(ij), t...

    Text Solution

    |

  10. A=[(cos theta, -sin theta),(sin theta, cos theta)] and AB=BA=l, then B...

    Text Solution

    |

  11. The inverse matrix of A=[(0,1,2),(1,2,3),(3,1,1)] is

    Text Solution

    |

  12. The solutiion of (x,y,z) the equation [(-1,0,1),(-1,1,0),(0,-1,1)][(x)...

    Text Solution

    |

  13. For the system of equaltions : x+2y+3z=1 2x+y+3z=2 5x+5y+9z=4

    Text Solution

    |

  14. If A=[(cos^(2)alpha, cos alpha sin alpha),(cos alpha sin alpha, sin^(2...

    Text Solution

    |

  15. If A(alpha)=[(cos alpha, sin alpha),(-sin alpha, cos alpha)] then the ...

    Text Solution

    |

  16. If A=[(1,-1),(2,-1)] and B=[(1,a),(4,b)] and (A+B)^(2)=A^(2)+B^(2). ...

    Text Solution

    |

  17. If A+I=[(3,-2),(4,1)] then (A+I)(A-I) is equal to

    Text Solution

    |

  18. If A=[(x,y,z)],B=[(a,h,g),(h,b,f),(g,f,c)] and C=[(x),(y),(z)] Then ...

    Text Solution

    |

  19. If A=[(-2,4),(-1,2)] then A^(2) is equal to

    Text Solution

    |