Home
Class 12
MATHS
The solution of the system of equations ...

The solution of the system of equations is `x-y+2z=1,2y-3z=1` and `3x-2y+4y=2` is

A

`x=1, y=5` and `z=3`

B

`x=0, y=5` and `z=3`

C

`x=0, y=5` and `z=-3`

D

None of the above

Text Solution

AI Generated Solution

The correct Answer is:
To solve the system of equations given by: 1. \( x - y + 2z = 1 \) (Equation 1) 2. \( 2y - 3z = 1 \) (Equation 2) 3. \( 3x - 2y + 4z = 2 \) (Equation 3) we can represent this system in matrix form \( AX = B \), where: \[ A = \begin{pmatrix} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \quad B = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} \] ### Step 1: Find the Determinant of Matrix A To find the inverse of matrix \( A \), we first need to calculate its determinant \( \text{det}(A) \). \[ \text{det}(A) = 1 \cdot (2 \cdot 4 - (-3) \cdot (-2)) - (-1) \cdot (0 \cdot 4 - (-3) \cdot 3) + 2 \cdot (0 \cdot (-2) - 2 \cdot 3) \] Calculating each term: 1. \( 1 \cdot (8 - 6) = 1 \cdot 2 = 2 \) 2. \( 1 \cdot (0 - 9) = -9 \) (since we have a negative sign from the equation) 3. \( 2 \cdot (0 - 6) = -12 \) Now, summing these results: \[ \text{det}(A) = 2 + 9 - 12 = -1 \] ### Step 2: Find the Adjoint of Matrix A Next, we need to find the adjoint of matrix \( A \). The adjoint is found by calculating the cofactor matrix and then taking its transpose. The cofactor matrix is calculated as follows: 1. For element \( a_{11} \): \( (-1)^{1+1} \cdot \text{det} \begin{pmatrix} 2 & -3 \\ -2 & 4 \end{pmatrix} = 1 \cdot (2 \cdot 4 - (-3)(-2)) = 8 - 6 = 2 \) 2. For element \( a_{12} \): \( (-1)^{1+2} \cdot \text{det} \begin{pmatrix} 0 & -3 \\ 3 & 4 \end{pmatrix} = -1 \cdot (0 \cdot 4 - (-3)(3)) = -(-9) = 9 \) 3. For element \( a_{13} \): \( (-1)^{1+3} \cdot \text{det} \begin{pmatrix} 0 & 2 \\ 3 & -2 \end{pmatrix} = 1 \cdot (0 \cdot (-2) - 2 \cdot 3) = -6 \) Continuing this process for all elements, we find: \[ \text{Cofactor matrix} = \begin{pmatrix} 2 & 9 & -6 \\ -6 & 4 & 3 \\ 6 & 3 & 2 \end{pmatrix} \] Now, taking the transpose gives us the adjoint: \[ \text{adj}(A) = \begin{pmatrix} 2 & -6 & 6 \\ 9 & 4 & 3 \\ -6 & 3 & 2 \end{pmatrix} \] ### Step 3: Calculate the Inverse of Matrix A The inverse of matrix \( A \) is given by: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) = -1 \cdot \begin{pmatrix} 2 & -6 & 6 \\ 9 & 4 & 3 \\ -6 & 3 & 2 \end{pmatrix} \] Thus, \[ A^{-1} = \begin{pmatrix} -2 & 6 & -6 \\ -9 & -4 & -3 \\ 6 & -3 & -2 \end{pmatrix} \] ### Step 4: Multiply \( A^{-1} \) by \( B \) Now we can find \( X \) by multiplying \( A^{-1} \) with \( B \): \[ X = A^{-1}B = \begin{pmatrix} -2 & 6 & -6 \\ -9 & -4 & -3 \\ 6 & -3 & -2 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} \] Calculating the product: 1. First element: \( -2 \cdot 1 + 6 \cdot 1 - 6 \cdot 2 = -2 + 6 - 12 = -8 \) 2. Second element: \( -9 \cdot 1 - 4 \cdot 1 - 3 \cdot 2 = -9 - 4 - 6 = -19 \) 3. Third element: \( 6 \cdot 1 - 3 \cdot 1 - 2 \cdot 2 = 6 - 3 - 4 = -1 \) Thus, \[ X = \begin{pmatrix} -8 \\ -19 \\ -1 \end{pmatrix} \] ### Final Result The solution to the system of equations is: \[ x = -8, \quad y = -19, \quad z = -1 \]

To solve the system of equations given by: 1. \( x - y + 2z = 1 \) (Equation 1) 2. \( 2y - 3z = 1 \) (Equation 2) 3. \( 3x - 2y + 4z = 2 \) (Equation 3) we can represent this system in matrix form \( AX = B \), where: ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MISCELLANEOUS PROBLEMS|49 Videos
  • MATRICES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET CORNER|18 Videos
  • MATHEMATICAL LOGIC

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET CORNER|22 Videos
  • MHTCET 2007

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MATHEMATICS|50 Videos

Similar Questions

Explore conceptually related problems

If (x_(0), y_(0), z_(0)) is any solution of the system of equations 2x-y-z=1, -x-y+2z=1 and x-2y+z=2 , then the value of (x_(0)^(2)-y_(0)^(2)+1)/(z_(0)) (where, z_(0) ne 0 ) is

The number of solutions of the system of equations: 2x+y-z=7,\ \ x-3y+2z=1,\ \ x+4y-3z=5 is (a) 3 (b) 2 (c) 1 (d) 0

The system of equations x+2y-4z=3,2x-3y+2z=5 and x -12y +16z =1 has

If alpha,beta and gamma are the values of x,y and z respectively which satisfy the system of equations 2x+y+z=1,x-2y-3z=1 and 3x+2y+4z=5, then sin^(-1)((alpha)/(gamma))=

Use product [[1,-1, 2],[ 0, 2,-3],[ 3,-2, 4]] [[-2, 0, 1],[ 9, 2,-3],[ 6, 1,-2]] to solve the system of equation: x-y+2z=1; 2y-3z=1; 3x-2y+4z=2

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-MATRICES-MHT CET CORNER
  1. The solution of the system of equations is x-y+2z=1,2y-3z=1 and 3x-2y+...

    Text Solution

    |

  2. If A=[(1,1,0),(2,1,5),(1,2,1)] then a(11)A(21)+a(12)A(22)+a(13)A(23) i...

    Text Solution

    |

  3. If A=[(2,2),(-3,2)], B=[(0,-1),(1,0)] then (B^(-1)A^(-1))^(-1) is equa...

    Text Solution

    |

  4. If matrix A=[(1,2),(4,3)], such that AX=l, then X is equal to

    Text Solution

    |

  5. The multiplicative inverse of A = [(cos theta,-sin theta),(sin theta,c...

    Text Solution

    |

  6. The value of a for which system of equation , a^3x+(a+1)^3y+(a+2)^3z=0...

    Text Solution

    |

  7. Let A=[(cos theta, -sin theta),(- sin theta,-cos theta)] then the inve...

    Text Solution

    |

  8. If matrix A=[(a,b),(c,d)], then |A|^(-1) is equal to

    Text Solution

    |

  9. If A=[(3,2,4),(1,2,1),(3,2,6)] and A(ij) are the cofactors of a(ij), t...

    Text Solution

    |

  10. A=[(cos theta, -sin theta),(sin theta, cos theta)] and AB=BA=l, then B...

    Text Solution

    |

  11. The inverse matrix of A=[(0,1,2),(1,2,3),(3,1,1)] is

    Text Solution

    |

  12. The solutiion of (x,y,z) the equation [(-1,0,1),(-1,1,0),(0,-1,1)][(x)...

    Text Solution

    |

  13. For the system of equaltions : x+2y+3z=1 2x+y+3z=2 5x+5y+9z=4

    Text Solution

    |

  14. If A=[(cos^(2)alpha, cos alpha sin alpha),(cos alpha sin alpha, sin^(2...

    Text Solution

    |

  15. If A(alpha)=[(cos alpha, sin alpha),(-sin alpha, cos alpha)] then the ...

    Text Solution

    |

  16. If A=[(1,-1),(2,-1)] and B=[(1,a),(4,b)] and (A+B)^(2)=A^(2)+B^(2). ...

    Text Solution

    |

  17. If A+I=[(3,-2),(4,1)] then (A+I)(A-I) is equal to

    Text Solution

    |

  18. If A=[(x,y,z)],B=[(a,h,g),(h,b,f),(g,f,c)] and C=[(x),(y),(z)] Then ...

    Text Solution

    |

  19. If A=[(-2,4),(-1,2)] then A^(2) is equal to

    Text Solution

    |