Home
Class 12
MATHS
The sum of [(2,-3),(5,-7)] and its multi...

The sum of `[(2,-3),(5,-7)]` and its multiplicative inverse is

A

`[(-5,0),(0,-5)]`

B

`[(0,-2),(-2,0)]`

C

`[(0,0),(0,0)]`

D

`[(0,+2),(-2,0)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the sum of the matrix \(\begin{pmatrix} 2 & -3 \\ 5 & -7 \end{pmatrix}\) and its multiplicative inverse, we will follow these steps: ### Step 1: Define the Matrix Let the matrix \( A = \begin{pmatrix} 2 & -3 \\ 5 & -7 \end{pmatrix} \). ### Step 2: Calculate the Determinant of \( A \) The determinant of a 2x2 matrix \( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by the formula: \[ \text{det}(A) = ad - bc \] For our matrix \( A \): - \( a = 2 \) - \( b = -3 \) - \( c = 5 \) - \( d = -7 \) Calculating the determinant: \[ \text{det}(A) = (2 \times -7) - (-3 \times 5) = -14 + 15 = 1 \] ### Step 3: Find the Adjoint of \( A \) The adjoint of a 2x2 matrix \( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by: \[ \text{adj}(A) = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \] For our matrix \( A \): \[ \text{adj}(A) = \begin{pmatrix} -7 & 3 \\ -5 & 2 \end{pmatrix} \] ### Step 4: Calculate the Inverse of \( A \) The multiplicative inverse \( A^{-1} \) is given by the formula: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] Since \(\text{det}(A) = 1\), we have: \[ A^{-1} = 1 \cdot \begin{pmatrix} -7 & 3 \\ -5 & 2 \end{pmatrix} = \begin{pmatrix} -7 & 3 \\ -5 & 2 \end{pmatrix} \] ### Step 5: Calculate the Sum \( A + A^{-1} \) Now we will find the sum of the matrix \( A \) and its inverse \( A^{-1} \): \[ A + A^{-1} = \begin{pmatrix} 2 & -3 \\ 5 & -7 \end{pmatrix} + \begin{pmatrix} -7 & 3 \\ -5 & 2 \end{pmatrix} \] Adding the corresponding elements: \[ = \begin{pmatrix} 2 + (-7) & -3 + 3 \\ 5 + (-5) & -7 + 2 \end{pmatrix} = \begin{pmatrix} -5 & 0 \\ 0 & -5 \end{pmatrix} \] ### Final Answer The sum of the matrix and its multiplicative inverse is: \[ \begin{pmatrix} -5 & 0 \\ 0 & -5 \end{pmatrix} \]

To solve the problem of finding the sum of the matrix \(\begin{pmatrix} 2 & -3 \\ 5 & -7 \end{pmatrix}\) and its multiplicative inverse, we will follow these steps: ### Step 1: Define the Matrix Let the matrix \( A = \begin{pmatrix} 2 & -3 \\ 5 & -7 \end{pmatrix} \). ### Step 2: Calculate the Determinant of \( A \) The determinant of a 2x2 matrix \( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by the formula: \[ ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET CORNER|18 Videos
  • MATRICES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET CORNER|18 Videos
  • MATHEMATICAL LOGIC

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET CORNER|22 Videos
  • MHTCET 2007

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MATHEMATICS|50 Videos

Similar Questions

Explore conceptually related problems

Multiplicative inverse of 2^(7) is

The multiplicative inverse of is -2/3

Find the multiplicative inverse of 3-5i

Find the multiplicative inverse of 2-3i

Multiplicative inverse of -1(3/4) is

Multiplicative inverse of 7^(-2)

Find the multiplicative inverse of z=3-2i

The multiplicative inverse of 1/2

Find the multiplicative inverse of 3+4i .

The multiplicative inverse of 7^-2

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-MATRICES-MISCELLANEOUS PROBLEMS
  1. If A=[(2,3),(1,-2)] and A^(-1)=alphaA, then alpha is equal to

    Text Solution

    |

  2. If A is a singular matrix, then A (adj A) is a

    Text Solution

    |

  3. The sum of [(2,-3),(5,-7)] and its multiplicative inverse is

    Text Solution

    |

  4. If B is a non-singular matrix and A is a square matrix, then det (B^(-...

    Text Solution

    |

  5. If a matrix A is such that 3A^3 +2A^2+5A+I= 0, then A^(-1) is equal to

    Text Solution

    |

  6. If A and B are two square matrices such that B=-A^(-1)BA, then (A+B)^(...

    Text Solution

    |

  7. If A is a non -singular matrix such that A^(3)=A+l, then the inverse o...

    Text Solution

    |

  8. If A is a skew symmetric matrix of order n and C is a column matrix of...

    Text Solution

    |

  9. If A and B are two square matrices such that AB=A and BA=B, then A^(2)...

    Text Solution

    |

  10. Matrix A such that A^2=2A-I ,w h e r eI is the identity matrix, the fo...

    Text Solution

    |

  11. If A is a non-singular matrix of order 3, then adj(adj(A)) is equal to

    Text Solution

    |

  12. Let {:A=[(1,2),(-5,1)]and A^(-1)=xA+yI:}, then the values of x and y a...

    Text Solution

    |

  13. Let A =[(1,-1,1),(2,1,-3),(1,1,1)] and 10B=[(4,2,2),(-5,0,alpha),(...

    Text Solution

    |

  14. If A(theta)=[(1, than theta),(-tan, theta=1)] and AB=l, then (sec^(2)t...

    Text Solution

    |

  15. If A=[(cos alpha, -sin alpha, 0),(sin alpha, cos alpha,0),(0,0,1)] the...

    Text Solution

    |

  16. Suppose A is a matrix of order 3 and B=|A|A^(-1). If |A|=5, then |B| i...

    Text Solution

    |

  17. if[{:(2,1),(3,2):}]A[{:(-3,2),(5,-3):}]=[{:(1,0),(0,1):}],"then" A=?

    Text Solution

    |

  18. If f(theta)=[(cos theta, -sin theta,0),(sin theta, cos theta, 0),(0,0,...

    Text Solution

    |

  19. If A is a singular matrix, then Aadj(A) is a/an

    Text Solution

    |

  20. If k is a scalar and l is a unit matrix of order 3 then adj(kl) is equ...

    Text Solution

    |