Home
Class 12
MATHS
If A=[(cos alpha, -sin alpha, 0),(sin al...

If `A=[(cos alpha, -sin alpha, 0),(sin alpha, cos alpha,0),(0,0,1)]` then `A^(-1)` is

A

A

B

`-A`

C

`adj(A)`

D

`-adj(A)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A = \begin{pmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate the Determinant of \( A \) The determinant of a 3x3 matrix \( A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \) is given by: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix \( A \): - \( a = \cos \alpha \) - \( b = -\sin \alpha \) - \( c = 0 \) - \( d = \sin \alpha \) - \( e = \cos \alpha \) - \( f = 0 \) - \( g = 0 \) - \( h = 0 \) - \( i = 1 \) Calculating the determinant: \[ \text{det}(A) = \cos \alpha (\cos \alpha \cdot 1 - 0 \cdot 0) - (-\sin \alpha)(\sin \alpha \cdot 1 - 0 \cdot 0) + 0 \] \[ = \cos^2 \alpha + \sin^2 \alpha = 1 \] ### Step 2: Calculate the Adjoint of \( A \) The adjoint of a matrix is the transpose of the cofactor matrix. We calculate the cofactors of each element of \( A \): 1. **Cofactor \( C_{11} \)**: \[ C_{11} = \text{det} \begin{pmatrix} \cos \alpha & 0 \\ 0 & 1 \end{pmatrix} = \cos \alpha \] 2. **Cofactor \( C_{12} \)**: \[ C_{12} = -\text{det} \begin{pmatrix} \sin \alpha & 0 \\ 0 & 1 \end{pmatrix} = -\sin \alpha \] 3. **Cofactor \( C_{13} \)**: \[ C_{13} = \text{det} \begin{pmatrix} \sin \alpha & \cos \alpha \\ 0 & 0 \end{pmatrix} = 0 \] 4. **Cofactor \( C_{21} \)**: \[ C_{21} = -\text{det} \begin{pmatrix} -\sin \alpha & 0 \\ 0 & 1 \end{pmatrix} = \sin \alpha \] 5. **Cofactor \( C_{22} \)**: \[ C_{22} = \text{det} \begin{pmatrix} \cos \alpha & 0 \\ 0 & 1 \end{pmatrix} = \cos \alpha \] 6. **Cofactor \( C_{23} \)**: \[ C_{23} = -\text{det} \begin{pmatrix} \cos \alpha & -\sin \alpha \\ 0 & 0 \end{pmatrix} = 0 \] 7. **Cofactor \( C_{31} \)**: \[ C_{31} = \text{det} \begin{pmatrix} -\sin \alpha & 0 \\ \cos \alpha & 0 \end{pmatrix} = 0 \] 8. **Cofactor \( C_{32} \)**: \[ C_{32} = -\text{det} \begin{pmatrix} \cos \alpha & 0 \\ \sin \alpha & 0 \end{pmatrix} = 0 \] 9. **Cofactor \( C_{33} \)**: \[ C_{33} = \text{det} \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} = \cos^2 \alpha + \sin^2 \alpha = 1 \] The cofactor matrix is: \[ \text{Cof}(A) = \begin{pmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix} \] Taking the transpose gives us the adjoint: \[ \text{adj}(A) = \begin{pmatrix} \cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix} \] ### Step 3: Calculate the Inverse of \( A \) Using the formula for the inverse of a matrix: \[ A^{-1} = \frac{\text{adj}(A)}{\text{det}(A)} \] Since \( \text{det}(A) = 1 \): \[ A^{-1} = \text{adj}(A) = \begin{pmatrix} \cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix} \] ### Final Answer \[ A^{-1} = \begin{pmatrix} \cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix} \]

To find the inverse of the matrix \( A = \begin{pmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate the Determinant of \( A \) The determinant of a 3x3 matrix \( A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \) is given by: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET CORNER|18 Videos
  • MATRICES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET CORNER|18 Videos
  • MATHEMATICAL LOGIC

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET CORNER|22 Videos
  • MHTCET 2007

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MATHEMATICS|50 Videos

Similar Questions

Explore conceptually related problems

Let A_(alpha)=[[cos alpha,-sin alpha,osin alpha,cos alpha,00,0,1]]

If A(alpha, beta)=[("cos" alpha,sin alpha,0),(-sin alpha,cos alpha,0),(0,0,e^(beta))] , then A(alpha, beta)^(-1) is equal to

If A=[(cos alpha,sin alpha),(-sin alpha,cos alpha)] and A. adj A=[(k,0),(0,k)] , then k is equal to

If A=([cos alpha,-sin alpha,0sin alpha,cos alpha,00,0,1]), find adj.AA(adj.A)=(adj.A)A,=|A|I_(3)

Let F(alpha)=[[cos alpha,-sin alpha,0sin alpha,cos alpha,00,0,1]], where alpha in R Then (F(alpha))^(-1) is equal to F(alpha^(-1)) b.F(-alpha) c.F(2 alpha)d.-[[1,11,0]]

Let A = [{:(cos alpha,- sin alpha ), ( sin alpha , cos alpha ):}], (a in R) such that A ^(32) = [{:(0,-1), (1, 0):}] is the value of alpha is (pi)/(2^(k)), then the value of k is

If Delta = |(cos alpha,- sin alpha,1),(sin alpha,cos alpha,1),(cos (alpha + beta),- sin (alpha + beta),1)| , then

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-MATRICES-MISCELLANEOUS PROBLEMS
  1. Let A =[(1,-1,1),(2,1,-3),(1,1,1)] and 10B=[(4,2,2),(-5,0,alpha),(...

    Text Solution

    |

  2. If A(theta)=[(1, than theta),(-tan, theta=1)] and AB=l, then (sec^(2)t...

    Text Solution

    |

  3. If A=[(cos alpha, -sin alpha, 0),(sin alpha, cos alpha,0),(0,0,1)] the...

    Text Solution

    |

  4. Suppose A is a matrix of order 3 and B=|A|A^(-1). If |A|=5, then |B| i...

    Text Solution

    |

  5. if[{:(2,1),(3,2):}]A[{:(-3,2),(5,-3):}]=[{:(1,0),(0,1):}],"then" A=?

    Text Solution

    |

  6. If f(theta)=[(cos theta, -sin theta,0),(sin theta, cos theta, 0),(0,0,...

    Text Solution

    |

  7. If A is a singular matrix, then Aadj(A) is a/an

    Text Solution

    |

  8. If k is a scalar and l is a unit matrix of order 3 then adj(kl) is equ...

    Text Solution

    |

  9. Consider the system of equations x+y+z=6 x+2y+3z=10 x+2y+lambda...

    Text Solution

    |

  10. Let a, b, c be any real numbers. Suppose that there are real numbers...

    Text Solution

    |

  11. Let a, b, c be positive real numbers. The following system of equation...

    Text Solution

    |

  12. If the system of linear equations x+2ay +az =0,x+3by+bz =0 and x+4cy ...

    Text Solution

    |

  13. The symmetric part of the matrix A=[(1,2,4),(6,8,2),(2,-2,7)] is equal...

    Text Solution

    |

  14. If {:A=[(1,0,0),(0,1,0),(a,b,-1)]:}, then A^2 is equal to

    Text Solution

    |

  15. If A=[1 2 2 2 1-2a2b] is a matrix satisfying the equation AA^T=""9I , ...

    Text Solution

    |

  16. If A is a 3xx3 such that |5.adj(A)|=5 then |A| is equal to

    Text Solution

    |

  17. If A=[(alpha, 2),(2, alpha)] and |A^(3)|=27 then alpha is equal to

    Text Solution

    |

  18. The elements in the first row and third column of the inverse of the m...

    Text Solution

    |

  19. If A=[(-1,3),(2,1)] then 1+A+A^(2)+…………..+oo is equal to

    Text Solution

    |

  20. if A=[[1,-2] , [4,5]] and f(t)=t^2-3t+7 then f(A)+[[3,6],[-12,-9]]=

    Text Solution

    |