Home
Class 12
MATHS
If f(theta)=[(cos theta, -sin theta,0),(...

If `f(theta)=[(cos theta, -sin theta,0),(sin theta, cos theta, 0),(0,0,1)]` then `{f(theta)^(-1)}` is equal to

A

`f(-theta)`

B

`f(theta)^(-1)`

C

`f(2theta)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( f(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate the Determinant of \( f(\theta) \) The determinant of a 3x3 matrix \( A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \) is given by: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix \( f(\theta) \): \[ \text{det}(f(\theta)) = \cos \theta \cdot ( \cos \theta \cdot 1 - 0 \cdot 0) - (-\sin \theta) \cdot (\sin \theta \cdot 1 - 0 \cdot 0) + 0 \cdot ( \sin \theta \cdot 0 - \cos \theta \cdot 0) \] Calculating this gives: \[ \text{det}(f(\theta)) = \cos^2 \theta + \sin^2 \theta = 1 \] ### Step 2: Find the Adjoint of \( f(\theta) \) The adjoint of a matrix is the transpose of its cofactor matrix. For \( f(\theta) \): 1. The cofactor of the element at position (1,1) is \( \text{det}\begin{pmatrix} \cos \theta & 0 \\ 0 & 1 \end{pmatrix} = \cos \theta \). 2. The cofactor of the element at position (1,2) is \( -\text{det}\begin{pmatrix} \sin \theta & 0 \\ 0 & 1 \end{pmatrix} = -\sin \theta \). 3. The cofactor of the element at position (1,3) is \( 0 \). 4. The cofactor of the element at position (2,1) is \( -\text{det}\begin{pmatrix} -\sin \theta & 0 \\ 0 & 1 \end{pmatrix} = \sin \theta \). 5. The cofactor of the element at position (2,2) is \( \text{det}\begin{pmatrix} \cos \theta & 0 \\ 0 & 1 \end{pmatrix} = \cos \theta \). 6. The cofactor of the element at position (2,3) is \( 0 \). 7. The cofactor of the element at position (3,1) is \( 0 \). 8. The cofactor of the element at position (3,2) is \( 0 \). 9. The cofactor of the element at position (3,3) is \( 1 \). Thus, the cofactor matrix is: \[ \text{Cof}(f(\theta)) = \begin{pmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \] Taking the transpose gives us the adjoint: \[ \text{adj}(f(\theta)) = \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \] ### Step 3: Calculate the Inverse Using the formula for the inverse of a matrix: \[ f(\theta)^{-1} = \frac{1}{\text{det}(f(\theta))} \cdot \text{adj}(f(\theta)) \] Since \( \text{det}(f(\theta)) = 1 \): \[ f(\theta)^{-1} = 1 \cdot \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \] Thus, we have: \[ f(\theta)^{-1} = \begin{pmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \] ### Final Answer \[ f(\theta)^{-1} = \begin{pmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \]

To find the inverse of the matrix \( f(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate the Determinant of \( f(\theta) \) The determinant of a 3x3 matrix \( A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \) is given by: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET CORNER|18 Videos
  • MATRICES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET CORNER|18 Videos
  • MATHEMATICAL LOGIC

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET CORNER|22 Videos
  • MHTCET 2007

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MATHEMATICS|50 Videos

Similar Questions

Explore conceptually related problems

Find the inverse of A=[[cos theta,-sin theta,0sin theta,cos theta,00,0,1]]

If the matrix [{:(cos theta,sin theta,0),(sin theta,cos theta,0),(0,0,1):}] is singular, then what is one of the values of theta ?

If the matrix ({:(cos theta, sin theta, 0),(sin theta, cos theta, 0),(0,0,1):}) is singular, then what is one of the value of theta ?

If cos2theta=0 , then |(0,costheta,sin theta),(cos theta, sin theta, 0),(sin theta, 0, cos theta)|^(2) is equal to…………

If A=[(-cos theta, -sin theta),(-cos theta, sin theta)] and A(adjA)=lamda[(1,0),(0,1)] then lamda is equal to

(cos^(2)theta)/(sin theta)-cosec theta+sin theta=0

If theta, phi epsilon R , then the determinant Delta=|(cos theta, - sin theta, 1),(sin theta, cos theta, 1),(cos(theta+phi),-sin(theta+phi),0)| lies in the interval

If sin theta+cos theta=1, then sin theta cos theta is equal to :

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-MATRICES-MISCELLANEOUS PROBLEMS
  1. Let A =[(1,-1,1),(2,1,-3),(1,1,1)] and 10B=[(4,2,2),(-5,0,alpha),(...

    Text Solution

    |

  2. If A(theta)=[(1, than theta),(-tan, theta=1)] and AB=l, then (sec^(2)t...

    Text Solution

    |

  3. If A=[(cos alpha, -sin alpha, 0),(sin alpha, cos alpha,0),(0,0,1)] the...

    Text Solution

    |

  4. Suppose A is a matrix of order 3 and B=|A|A^(-1). If |A|=5, then |B| i...

    Text Solution

    |

  5. if[{:(2,1),(3,2):}]A[{:(-3,2),(5,-3):}]=[{:(1,0),(0,1):}],"then" A=?

    Text Solution

    |

  6. If f(theta)=[(cos theta, -sin theta,0),(sin theta, cos theta, 0),(0,0,...

    Text Solution

    |

  7. If A is a singular matrix, then Aadj(A) is a/an

    Text Solution

    |

  8. If k is a scalar and l is a unit matrix of order 3 then adj(kl) is equ...

    Text Solution

    |

  9. Consider the system of equations x+y+z=6 x+2y+3z=10 x+2y+lambda...

    Text Solution

    |

  10. Let a, b, c be any real numbers. Suppose that there are real numbers...

    Text Solution

    |

  11. Let a, b, c be positive real numbers. The following system of equation...

    Text Solution

    |

  12. If the system of linear equations x+2ay +az =0,x+3by+bz =0 and x+4cy ...

    Text Solution

    |

  13. The symmetric part of the matrix A=[(1,2,4),(6,8,2),(2,-2,7)] is equal...

    Text Solution

    |

  14. If {:A=[(1,0,0),(0,1,0),(a,b,-1)]:}, then A^2 is equal to

    Text Solution

    |

  15. If A=[1 2 2 2 1-2a2b] is a matrix satisfying the equation AA^T=""9I , ...

    Text Solution

    |

  16. If A is a 3xx3 such that |5.adj(A)|=5 then |A| is equal to

    Text Solution

    |

  17. If A=[(alpha, 2),(2, alpha)] and |A^(3)|=27 then alpha is equal to

    Text Solution

    |

  18. The elements in the first row and third column of the inverse of the m...

    Text Solution

    |

  19. If A=[(-1,3),(2,1)] then 1+A+A^(2)+…………..+oo is equal to

    Text Solution

    |

  20. if A=[[1,-2] , [4,5]] and f(t)=t^2-3t+7 then f(A)+[[3,6],[-12,-9]]=

    Text Solution

    |