Home
Class 12
MATHS
The elements in the first row and third ...

The elements in the first row and third column of the inverse of the matrix `[(1,2,3),(0,1,2),(0,0,1)]` is

A

`-2`

B

`0`

C

`7`

D

`1`

Text Solution

AI Generated Solution

The correct Answer is:
To find the element in the first row and third column of the inverse of the matrix \( A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate the Determinant of the Matrix The determinant of a 3x3 matrix \( A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \) is calculated using the formula: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix: \[ \text{det}(A) = 1(1 \cdot 1 - 2 \cdot 0) - 2(0 \cdot 1 - 2 \cdot 0) + 3(0 \cdot 0 - 1 \cdot 0) = 1(1) - 2(0) + 3(0) = 1 \] ### Step 2: Check if the Inverse Exists Since the determinant is \( 1 \) (which is not zero), the inverse of the matrix exists. ### Step 3: Find the Adjoint of the Matrix To find the adjoint, we calculate the cofactor matrix and then transpose it. The cofactor \( C_{ij} \) for each element \( a_{ij} \) is given by: \[ C_{ij} = (-1)^{i+j} \cdot M_{ij} \] where \( M_{ij} \) is the determinant of the submatrix formed by removing the \( i \)-th row and \( j \)-th column. Calculating the cofactors: - For \( a_{11} = 1 \): \( C_{11} = 1 \) (det of \( \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \)) - For \( a_{12} = 2 \): \( C_{12} = -0 \) (det of \( \begin{pmatrix} 0 & 2 \\ 0 & 1 \end{pmatrix} \)) - For \( a_{13} = 3 \): \( C_{13} = 0 \) (det of \( \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \)) - For \( a_{21} = 0 \): \( C_{21} = 0 \) (det of \( \begin{pmatrix} 2 & 3 \\ 0 & 1 \end{pmatrix} \)) - For \( a_{22} = 1 \): \( C_{22} = 1 \) (det of \( \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix} \)) - For \( a_{23} = 2 \): \( C_{23} = -2 \) (det of \( \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix} \)) - For \( a_{31} = 0 \): \( C_{31} = 0 \) (det of \( \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix} \)) - For \( a_{32} = 0 \): \( C_{32} = 2 \) (det of \( \begin{pmatrix} 1 & 3 \\ 0 & 2 \end{pmatrix} \)) - For \( a_{33} = 1 \): \( C_{33} = 1 \) (det of \( \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \)) Thus, the cofactor matrix is: \[ \text{Cof}(A) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 2 & 1 \end{pmatrix} \] Now, we transpose this matrix to get the adjoint: \[ \text{Adj}(A) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & -2 & 1 \end{pmatrix} \] ### Step 4: Calculate the Inverse of the Matrix Using the formula for the inverse: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{Adj}(A) \] Since \( \text{det}(A) = 1 \): \[ A^{-1} = \text{Adj}(A) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & -2 & 1 \end{pmatrix} \] ### Step 5: Find the Element in the First Row and Third Column The element in the first row and third column of \( A^{-1} \) is: \[ A^{-1}_{13} = 0 \] ### Final Answer The element in the first row and third column of the inverse of the matrix is \( 0 \). ---

To find the element in the first row and third column of the inverse of the matrix \( A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate the Determinant of the Matrix The determinant of a 3x3 matrix \( A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \) is calculated using the formula: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix: ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET CORNER|18 Videos
  • MATRICES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET CORNER|18 Videos
  • MATHEMATICAL LOGIC

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET CORNER|22 Videos
  • MHTCET 2007

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MATHEMATICS|50 Videos

Similar Questions

Explore conceptually related problems

The element in the first row and third column of the inverse of the matrix [(1,2,-3),(0,1,2),(0,0,1)] is

The element in the first row and third column of the inverse of the matrix {:[(1,2,-3),(0,1,2),(0,0,1)]:} , is

Find the inverse of the matrix [(1,2,3),(0,1,4),(5,6,0)]

The inverse of the matrix [(1,1,1),(1,0,2),(3,1,1)] is

The inverse of the matrix [(1,0,0),(3,3,0),(5,2,-1)] is

Find the inverse of the matrix : A=[{:(0,1,2),(0,1,1),(1,0,2):}]

The inverse of the matrix [[1, 2, 3], [0, 2, 4], [0, 0, 5]] is

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-MATRICES-MISCELLANEOUS PROBLEMS
  1. Let A =[(1,-1,1),(2,1,-3),(1,1,1)] and 10B=[(4,2,2),(-5,0,alpha),(...

    Text Solution

    |

  2. If A(theta)=[(1, than theta),(-tan, theta=1)] and AB=l, then (sec^(2)t...

    Text Solution

    |

  3. If A=[(cos alpha, -sin alpha, 0),(sin alpha, cos alpha,0),(0,0,1)] the...

    Text Solution

    |

  4. Suppose A is a matrix of order 3 and B=|A|A^(-1). If |A|=5, then |B| i...

    Text Solution

    |

  5. if[{:(2,1),(3,2):}]A[{:(-3,2),(5,-3):}]=[{:(1,0),(0,1):}],"then" A=?

    Text Solution

    |

  6. If f(theta)=[(cos theta, -sin theta,0),(sin theta, cos theta, 0),(0,0,...

    Text Solution

    |

  7. If A is a singular matrix, then Aadj(A) is a/an

    Text Solution

    |

  8. If k is a scalar and l is a unit matrix of order 3 then adj(kl) is equ...

    Text Solution

    |

  9. Consider the system of equations x+y+z=6 x+2y+3z=10 x+2y+lambda...

    Text Solution

    |

  10. Let a, b, c be any real numbers. Suppose that there are real numbers...

    Text Solution

    |

  11. Let a, b, c be positive real numbers. The following system of equation...

    Text Solution

    |

  12. If the system of linear equations x+2ay +az =0,x+3by+bz =0 and x+4cy ...

    Text Solution

    |

  13. The symmetric part of the matrix A=[(1,2,4),(6,8,2),(2,-2,7)] is equal...

    Text Solution

    |

  14. If {:A=[(1,0,0),(0,1,0),(a,b,-1)]:}, then A^2 is equal to

    Text Solution

    |

  15. If A=[1 2 2 2 1-2a2b] is a matrix satisfying the equation AA^T=""9I , ...

    Text Solution

    |

  16. If A is a 3xx3 such that |5.adj(A)|=5 then |A| is equal to

    Text Solution

    |

  17. If A=[(alpha, 2),(2, alpha)] and |A^(3)|=27 then alpha is equal to

    Text Solution

    |

  18. The elements in the first row and third column of the inverse of the m...

    Text Solution

    |

  19. If A=[(-1,3),(2,1)] then 1+A+A^(2)+…………..+oo is equal to

    Text Solution

    |

  20. if A=[[1,-2] , [4,5]] and f(t)=t^2-3t+7 then f(A)+[[3,6],[-12,-9]]=

    Text Solution

    |