Home
Class 12
MATHS
If A=[(3,2,4),(1,2,1),(3,2,6)] and A(ij)...

If `A=[(3,2,4),(1,2,1),(3,2,6)]` and `A_(ij)` are the cofactors of `a_(ij)`, then `a_(11)A_(11)+a_(12)A_(12)+a_(13)A_(13)` is equal to

A

8

B

6

C

4

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to compute the expression \( a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{13} \) where \( A \) is the matrix given by \[ A = \begin{pmatrix} 3 & 2 & 4 \\ 1 & 2 & 1 \\ 3 & 2 & 6 \end{pmatrix} \] ### Step 1: Identify the elements \( a_{11}, a_{12}, a_{13} \) From the matrix \( A \): - \( a_{11} = 3 \) - \( a_{12} = 2 \) - \( a_{13} = 4 \) ### Step 2: Calculate the cofactors \( A_{11}, A_{12}, A_{13} \) #### Finding \( A_{11} \) The cofactor \( A_{11} \) is given by: \[ A_{11} = (-1)^{1+1} \cdot \text{det} \begin{pmatrix} 2 & 1 \\ 2 & 6 \end{pmatrix} \] Calculating the determinant: \[ \text{det} \begin{pmatrix} 2 & 1 \\ 2 & 6 \end{pmatrix} = (2 \cdot 6) - (1 \cdot 2) = 12 - 2 = 10 \] Thus, \[ A_{11} = 10 \] #### Finding \( A_{12} \) The cofactor \( A_{12} \) is given by: \[ A_{12} = (-1)^{1+2} \cdot \text{det} \begin{pmatrix} 1 & 1 \\ 3 & 6 \end{pmatrix} \] Calculating the determinant: \[ \text{det} \begin{pmatrix} 1 & 1 \\ 3 & 6 \end{pmatrix} = (1 \cdot 6) - (1 \cdot 3) = 6 - 3 = 3 \] Thus, \[ A_{12} = -3 \] #### Finding \( A_{13} \) The cofactor \( A_{13} \) is given by: \[ A_{13} = (-1)^{1+3} \cdot \text{det} \begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix} \] Calculating the determinant: \[ \text{det} \begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix} = (1 \cdot 2) - (2 \cdot 3) = 2 - 6 = -4 \] Thus, \[ A_{13} = -4 \] ### Step 3: Substitute the values into the expression Now we substitute \( a_{11}, a_{12}, a_{13} \) and their corresponding cofactors into the expression: \[ a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{13} = 3 \cdot 10 + 2 \cdot (-3) + 4 \cdot (-4) \] Calculating each term: - \( 3 \cdot 10 = 30 \) - \( 2 \cdot (-3) = -6 \) - \( 4 \cdot (-4) = -16 \) Adding these together: \[ 30 - 6 - 16 = 30 - 22 = 8 \] ### Final Answer Thus, the value of \( a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{13} \) is \[ \boxed{8} \]

To solve the problem, we need to compute the expression \( a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{13} \) where \( A \) is the matrix given by \[ A = \begin{pmatrix} 3 & 2 & 4 \\ 1 & 2 & 1 \\ 3 & 2 & 6 \end{pmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MISCELLANEOUS PROBLEMS|49 Videos
  • MATHEMATICAL LOGIC

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET CORNER|22 Videos
  • MHTCET 2007

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MATHEMATICS|50 Videos

Similar Questions

Explore conceptually related problems

If A=[[a_(11), a_(12), a_(13)], [a_(21), a_(22), a_(23)], [a_(31), a_(32), a_(33)]] and a_(ij) denote the cofactor of element A_(ij) , then a_(11)A_(11)+a_(12)A_(12)+a_(13)A_(13)=

If A=[[a_(11), a_(12), a_(13)], [a_(21), a_(22), a_(23)], [a_(31), a_(32), a_(33)]] and A_(ij) denote the cofactor of element a_(ij) , then a_(11)A_(21)+a_(12)A_(22)+a_(13)A_(23)=

If A=[[1, 1, 0], [2, 1, 5],[1, 2, 1]] and a_(ij) denote the cofactor of element A_(ij) , then a_(11)A_(21)+a_(21)A_(22)+a_(13)A_(23)=

If A=[(1,1,0),(2,1,5),(1,2,1)] then a_(11)A_(21)+a_(12)A_(22)+a_(13)A_(23) is equal to

Let A=[a_(ij)]_(3xx3) be a matrix such that a_(ij)=(i+2j)/(2) where i,j in [1, 3] and i,j inN . If C_(ij) be a cofactor of a_(ij), then the value of a_(11)C_(21)+a_(12)C_(22)+a_(13)C_(23)+a_(21)C_(31)+a_(22)C_(32)+a_(33)C_(33)+a_(31)C_(11)+a_(32)C_(12)+a_(33)C_(13) is equal to

If Delta=|[a_(11),a_(12),a_(13)],[a_(21),a_(22),a_(23)],[a_(31),a_(32),a_(33)]| and A_(i j) is cofactors of a_(i j) , then value of Delta is given by A. a_(11)A_(31)+a_(12)A_(32)+a_(13)A_(33) B. a_(11)A_(11)+a_(12)A_(21)+a_(13)A_(31) C. a_(21)A_(11) + a_(22)A_(12) + a_(23)A_(13) D. a_(11)A_(11) + a_(21)A_(21) + a_(31)A_(31)

If A=[[3,4,5],[1,6,7],[2,8,3]] ,then the value of a_(21)A_(11)+a_(22)A_(12)+a_(23)A_(13) is equal to

IF A=[(1,1,0),(2,1,5),(1,2,1)], then a_(11) A_(21) +a_(12)A_(22)+a_(13)A_(23) =

If A=(a_(ij)) is a 4xx4 matrix and C_(ij) is the co-factor of the element a_(ij) in Det(A), then the expression a_(11)C_(11)+a_(12)C_(12)+a_(13)C_(13)+a_(14)C_(14) equals-

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-MATRICES-MHT CET CORNER
  1. If A=[(1,1,0),(2,1,5),(1,2,1)] then a(11)A(21)+a(12)A(22)+a(13)A(23) i...

    Text Solution

    |

  2. If A=[(2,2),(-3,2)], B=[(0,-1),(1,0)] then (B^(-1)A^(-1))^(-1) is equa...

    Text Solution

    |

  3. If matrix A=[(1,2),(4,3)], such that AX=l, then X is equal to

    Text Solution

    |

  4. The multiplicative inverse of A = [(cos theta,-sin theta),(sin theta,c...

    Text Solution

    |

  5. The value of a for which system of equation , a^3x+(a+1)^3y+(a+2)^3z=0...

    Text Solution

    |

  6. Let A=[(cos theta, -sin theta),(- sin theta,-cos theta)] then the inve...

    Text Solution

    |

  7. If matrix A=[(a,b),(c,d)], then |A|^(-1) is equal to

    Text Solution

    |

  8. If A=[(3,2,4),(1,2,1),(3,2,6)] and A(ij) are the cofactors of a(ij), t...

    Text Solution

    |

  9. A=[(cos theta, -sin theta),(sin theta, cos theta)] and AB=BA=l, then B...

    Text Solution

    |

  10. The inverse matrix of A=[(0,1,2),(1,2,3),(3,1,1)] is

    Text Solution

    |

  11. The solutiion of (x,y,z) the equation [(-1,0,1),(-1,1,0),(0,-1,1)][(x)...

    Text Solution

    |

  12. For the system of equaltions : x+2y+3z=1 2x+y+3z=2 5x+5y+9z=4

    Text Solution

    |

  13. If A=[(cos^(2)alpha, cos alpha sin alpha),(cos alpha sin alpha, sin^(2...

    Text Solution

    |

  14. If A(alpha)=[(cos alpha, sin alpha),(-sin alpha, cos alpha)] then the ...

    Text Solution

    |

  15. If A=[(1,-1),(2,-1)] and B=[(1,a),(4,b)] and (A+B)^(2)=A^(2)+B^(2). ...

    Text Solution

    |

  16. If A+I=[(3,-2),(4,1)] then (A+I)(A-I) is equal to

    Text Solution

    |

  17. If A=[(x,y,z)],B=[(a,h,g),(h,b,f),(g,f,c)] and C=[(x),(y),(z)] Then ...

    Text Solution

    |

  18. If A=[(-2,4),(-1,2)] then A^(2) is equal to

    Text Solution

    |