Home
Class 12
MATHS
The solutiion of (x,y,z) the equation [(...

The solutiion of `(x,y,z)` the equation `[(-1,0,1),(-1,1,0),(0,-1,1)][(x),(y),(z)]=[(1),(1),(2)]` is `(x,y,z)`

A

`(1,1,1)`

B

`(0,-1,2)`

C

`(-1,2,2)`

D

`(-1,0,2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation represented by the matrix equation \( A \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} \), where \[ A = \begin{pmatrix} -1 & 0 & 1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix}, \] we will follow these steps: ### Step 1: Write the equation in matrix form We can express the equation as \( AX = B \) where \[ X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}. \] ### Step 2: Find the inverse of matrix \( A \) To find \( X \), we need to calculate \( A^{-1} \) using the formula: \[ A^{-1} = \frac{1}{\text{det}(A)} \text{adj}(A). \] ### Step 3: Calculate the determinant of \( A \) The determinant of a 3x3 matrix can be calculated using the formula: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg). \] For our matrix \( A \): \[ \text{det}(A) = -1 \cdot (1 \cdot 1 - 0 \cdot (-1)) - 0 \cdot (-1 \cdot 1 - 0 \cdot 0) + 1 \cdot (-1 \cdot (-1) - 1 \cdot 0) = -1 \cdot 1 + 0 + 1 = 0. \] ### Step 4: Calculate the adjoint of \( A \) The adjoint of a matrix is the transpose of its cofactor matrix. We will calculate the cofactors for each element of \( A \). 1. For \( a_{11} = -1 \): \[ \text{Cofactor} = \begin{vmatrix} 1 & 0 \\ -1 & 1 \end{vmatrix} = 1. \] 2. For \( a_{12} = 0 \): \[ \text{Cofactor} = -\begin{vmatrix} -1 & 0 \\ 0 & 1 \end{vmatrix} = 0. \] 3. For \( a_{13} = 1 \): \[ \text{Cofactor} = \begin{vmatrix} -1 & 1 \\ 0 & -1 \end{vmatrix} = 1. \] 4. For \( a_{21} = -1 \): \[ \text{Cofactor} = -\begin{vmatrix} 0 & 1 \\ -1 & 1 \end{vmatrix} = 1. \] 5. For \( a_{22} = 1 \): \[ \text{Cofactor} = \begin{vmatrix} -1 & 1 \\ 0 & 1 \end{vmatrix} = -1. \] 6. For \( a_{23} = 0 \): \[ \text{Cofactor} = -\begin{vmatrix} -1 & 0 \\ 0 & -1 \end{vmatrix} = -1. \] 7. For \( a_{31} = 0 \): \[ \text{Cofactor} = \begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix} = -1. \] 8. For \( a_{32} = -1 \): \[ \text{Cofactor} = -\begin{vmatrix} -1 & 1 \\ -1 & 0 \end{vmatrix} = -1. \] 9. For \( a_{33} = 1 \): \[ \text{Cofactor} = \begin{vmatrix} -1 & 0 \\ -1 & 1 \end{vmatrix} = -1. \] Thus, the cofactor matrix is: \[ \text{Cofactor}(A) = \begin{pmatrix} 1 & 0 & 1 \\ 1 & -1 & -1 \\ -1 & -1 & -1 \end{pmatrix}. \] The adjoint of \( A \) is the transpose of the cofactor matrix: \[ \text{adj}(A) = \begin{pmatrix} 1 & 1 & -1 \\ 0 & -1 & -1 \\ 1 & -1 & -1 \end{pmatrix}. \] ### Step 5: Calculate \( A^{-1} \) Since we found that \( \text{det}(A) = 0 \), the matrix \( A \) is singular, and thus, \( A^{-1} \) does not exist. ### Step 6: Solve for \( X \) Since \( A^{-1} \) does not exist, we cannot find a unique solution for \( X \). However, we can still analyze the system of equations represented by \( AX = B \). ### Conclusion The system of equations does not have a unique solution due to the singular nature of matrix \( A \).

To solve the equation represented by the matrix equation \( A \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} \), where \[ A = \begin{pmatrix} -1 & 0 & 1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix}, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MISCELLANEOUS PROBLEMS|49 Videos
  • MATHEMATICAL LOGIC

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET CORNER|22 Videos
  • MHTCET 2007

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MATHEMATICS|50 Videos

Similar Questions

Explore conceptually related problems

If [(1,2,-3),(0,4,5),(0,0,1)][(x),(y),(z)]=[(1),(1),(1)] , then (x, y, z) is equal to

If [(1,0,0 ), (0,-1,0), (0,0, -1)][(x),(y),( z)]=[(1),(0),(1)] , find x ,\ y\ a n d\ z .

The solution of the equation [[1,0 ,1],[-1,1 ,0],[0 ,-1,1]][[x],[ y] ,[z]]=[[1],[ 1],[ 2]] is

If [(1 ,0, 0) ,(0 ,1, 0),( 0 ,0 ,1)][(x),( y),( z)]=[(1),(-1),( 0)] , find x ,\ y\ a n d\ z .

If [(1, 0 ,0 ),(0,y,0),( 0, 0, 1)][(x),(-1),(z)]=[(1),( 0),( 1)] , find x ,\ y\ a n d\ z .

If [{:(1,1,1),(1,-2,-2),(1,3,1):}][{:(x),(y),(z):}]=[{:(0),(3),(4):}] , then [{:(x),(y),(z):}] is equal to

If [[1,0,0],[0,1,0],[0,0,1]][[x],[y],[z]]=[[1],[-1],[0]] then value of (x+y+z)is

If [{:(,x-y,1,z),(,2x-y,0,w):}]=[{:(,-1,1,4),(,0,0,5):}], "find x,y,z,w"

Choose the correct answer in questions 17 to 19: If x, y, z are nonzero real numbers then the inverse of metrix A=[{:(x,0,0),(0,y,0),(0,0,z):}] is : (a) [{:(x^(-1),0,0),(0,y^(1),0),(0,0,z^(1)):}] (b) xyz[{:(x^(-1),0,0),(0,y^(1),0),(0,0,z^(1)):}] ( c) 1/(xyz)[{:(x,0,0),(0,y,0),(0,0,z):}] (d) 1/(xyz)[{:(1,0,0),(0,1,0),(0,0,1):}]

STATEMENT-1 : The centroid of a tetrahedron with vertices (0, 0,0), (4, 0, 0), (0, -8, 0), (0, 0, 12)is (1, -2, 3). and STATEMENT-2 : The centroid of a triangle with vertices (x_(1), y_(1), z_(1)), (x_(2), y_(2), z_(2)) and (x_(3), y_(3), z_(3)) is ((x_(1)+x_(2)+x_(3))/3, (y_(1)+y_(2)+y_(3))/3, (z_(1)+z_(2)+z_(3))/3)

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-MATRICES-MHT CET CORNER
  1. If A=[(1,1,0),(2,1,5),(1,2,1)] then a(11)A(21)+a(12)A(22)+a(13)A(23) i...

    Text Solution

    |

  2. If A=[(2,2),(-3,2)], B=[(0,-1),(1,0)] then (B^(-1)A^(-1))^(-1) is equa...

    Text Solution

    |

  3. If matrix A=[(1,2),(4,3)], such that AX=l, then X is equal to

    Text Solution

    |

  4. The multiplicative inverse of A = [(cos theta,-sin theta),(sin theta,c...

    Text Solution

    |

  5. The value of a for which system of equation , a^3x+(a+1)^3y+(a+2)^3z=0...

    Text Solution

    |

  6. Let A=[(cos theta, -sin theta),(- sin theta,-cos theta)] then the inve...

    Text Solution

    |

  7. If matrix A=[(a,b),(c,d)], then |A|^(-1) is equal to

    Text Solution

    |

  8. If A=[(3,2,4),(1,2,1),(3,2,6)] and A(ij) are the cofactors of a(ij), t...

    Text Solution

    |

  9. A=[(cos theta, -sin theta),(sin theta, cos theta)] and AB=BA=l, then B...

    Text Solution

    |

  10. The inverse matrix of A=[(0,1,2),(1,2,3),(3,1,1)] is

    Text Solution

    |

  11. The solutiion of (x,y,z) the equation [(-1,0,1),(-1,1,0),(0,-1,1)][(x)...

    Text Solution

    |

  12. For the system of equaltions : x+2y+3z=1 2x+y+3z=2 5x+5y+9z=4

    Text Solution

    |

  13. If A=[(cos^(2)alpha, cos alpha sin alpha),(cos alpha sin alpha, sin^(2...

    Text Solution

    |

  14. If A(alpha)=[(cos alpha, sin alpha),(-sin alpha, cos alpha)] then the ...

    Text Solution

    |

  15. If A=[(1,-1),(2,-1)] and B=[(1,a),(4,b)] and (A+B)^(2)=A^(2)+B^(2). ...

    Text Solution

    |

  16. If A+I=[(3,-2),(4,1)] then (A+I)(A-I) is equal to

    Text Solution

    |

  17. If A=[(x,y,z)],B=[(a,h,g),(h,b,f),(g,f,c)] and C=[(x),(y),(z)] Then ...

    Text Solution

    |

  18. If A=[(-2,4),(-1,2)] then A^(2) is equal to

    Text Solution

    |