Home
Class 12
MATHS
If A=[(cos^(2)alpha, cos alpha sin alpha...

If `A=[(cos^(2)alpha, cos alpha sin alpha),(cos alpha sin alpha, sin^(2)alpha)]` and `B=[(cos^(2)beta, cos beta sin beta),(cos beta sin beta, sin^(2) beta)]` are two matrices such that the product AB is null matrix, then `alpha-beta` is

A

0

B

multiple of `pi`

C

an odd multiple of `pi//2`

D

None of the above

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \alpha - \beta \) given that the product of matrices \( A \) and \( B \) is a null matrix. Given: \[ A = \begin{pmatrix} \cos^2 \alpha & \cos \alpha \sin \alpha \\ \cos \alpha \sin \alpha & \sin^2 \alpha \end{pmatrix} \] \[ B = \begin{pmatrix} \cos^2 \beta & \cos \beta \sin \beta \\ \cos \beta \sin \beta & \sin^2 \beta \end{pmatrix} \] We need to compute the product \( AB \) and set it equal to the null matrix \( 0 \). ### Step 1: Compute the product \( AB \) The product \( AB \) is calculated as follows: \[ AB = \begin{pmatrix} \cos^2 \alpha & \cos \alpha \sin \alpha \\ \cos \alpha \sin \alpha & \sin^2 \alpha \end{pmatrix} \begin{pmatrix} \cos^2 \beta & \cos \beta \sin \beta \\ \cos \beta \sin \beta & \sin^2 \beta \end{pmatrix} \] Calculating the elements of the resulting matrix: 1. First element: \[ \cos^2 \alpha \cdot \cos^2 \beta + \cos \alpha \sin \alpha \cdot \cos \beta \sin \beta \] 2. Second element: \[ \cos^2 \alpha \cdot \cos \beta \sin \beta + \cos \alpha \sin \alpha \cdot \sin^2 \beta \] 3. Third element: \[ \cos \alpha \sin \alpha \cdot \cos^2 \beta + \sin^2 \alpha \cdot \cos \beta \sin \beta \] 4. Fourth element: \[ \cos \alpha \sin \alpha \cdot \cos \beta \sin \beta + \sin^2 \alpha \cdot \sin^2 \beta \] Thus, we have: \[ AB = \begin{pmatrix} \cos^2 \alpha \cos^2 \beta + \cos \alpha \sin \alpha \cos \beta \sin \beta & \cos^2 \alpha \cos \beta \sin \beta + \cos \alpha \sin \alpha \sin^2 \beta \\ \cos \alpha \sin \alpha \cos^2 \beta + \sin^2 \alpha \cos \beta \sin \beta & \cos \alpha \sin \alpha \cos \beta \sin \beta + \sin^2 \alpha \sin^2 \beta \end{pmatrix} \] ### Step 2: Set \( AB = 0 \) Since \( AB \) is a null matrix, we set each element to zero: 1. \( \cos^2 \alpha \cos^2 \beta + \cos \alpha \sin \alpha \cos \beta \sin \beta = 0 \) 2. \( \cos^2 \alpha \cos \beta \sin \beta + \cos \alpha \sin \alpha \sin^2 \beta = 0 \) 3. \( \cos \alpha \sin \alpha \cos^2 \beta + \sin^2 \alpha \cos \beta \sin \beta = 0 \) 4. \( \cos \alpha \sin \alpha \cos \beta \sin \beta + \sin^2 \alpha \sin^2 \beta = 0 \) ### Step 3: Factor out common terms From the first equation, we can factor out \( \cos \beta \): \[ \cos \beta (\cos^2 \alpha \cos \beta + \sin \alpha \sin \beta) = 0 \] This gives us two cases: 1. \( \cos \beta = 0 \) 2. \( \cos^2 \alpha \cos \beta + \sin \alpha \sin \beta = 0 \) ### Step 4: Solve for \( \alpha - \beta \) If \( \cos \beta = 0 \), then \( \beta = \frac{\pi}{2} + n\pi \) for some integer \( n \). Now, consider the second case: \[ \cos^2 \alpha \cos \beta + \sin \alpha \sin \beta = 0 \] This can be rewritten using the cosine of the difference formula: \[ \cos(\alpha - \beta) = 0 \] Thus, \( \alpha - \beta = \frac{\pi}{2} + k\pi \) for some integer \( k \). ### Final Result The general solution for \( \alpha - \beta \) is: \[ \alpha - \beta = (2n + 1)\frac{\pi}{2} \] where \( n \) is an integer.

To solve the problem, we need to find the value of \( \alpha - \beta \) given that the product of matrices \( A \) and \( B \) is a null matrix. Given: \[ A = \begin{pmatrix} \cos^2 \alpha & \cos \alpha \sin \alpha \\ \cos \alpha \sin \alpha & \sin^2 \alpha \end{pmatrix} \] \[ B = \begin{pmatrix} \cos^2 \beta & \cos \beta \sin \beta \\ \cos \beta \sin \beta & \sin^2 \beta \end{pmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MISCELLANEOUS PROBLEMS|49 Videos
  • MATHEMATICAL LOGIC

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET CORNER|22 Videos
  • MHTCET 2007

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MATHEMATICS|50 Videos

Similar Questions

Explore conceptually related problems

{:A=[(cos^2 alpha,cosalphasinalpha),(cosalphasinalpha,sin^2alpha)]:} {:B=[(cos^2 beta,cosbetasinbeta),(cosbetasinbeta,sin^2beta)]:} are two matrices such that the product AB is the null matrix, then (alpha-beta) is

If A,=[[cos alpha,-sin alphasin alpha,cos alpha]] and B=,[[cos beta,cos alpha]] and B=[[cos beta,-sin betasin beta,cos betasin beta,cos beta]] then show that AB=BA

Prove that the product of the matrices [[cos^2alpha, cosalphasinalpha],[cosalphasinalpha,sin^2alpha]] and [[cos^2beta,cosbetasinbeta],[cosbetasinbeta,sin^beta]] is the null matrix when alpha and beta differ by an odd multiple of pi/ 2.

Evaluate ,,,|cos alpha cos beta,cos alpha sin beta,-sin alpha-sin beta,cos beta,0sin alpha,cos beta,sin alpha sin beta,cos alpha]|

det[[cos alpha cos beta,cos alpha sin beta,-sin alpha-sin beta,cos beta,0sin alpha cos beta,sin alpha sin beta,cos alpha]]

(sinalpha cos beta+cos alpha sin beta)^2+(cos alpha cos beta-sin alpha sin beta)^2=1

A = [[0, sin alpha, sin alpha sin beta-sin alpha, 0, cos alpha cos beta-sin alpha sin beta, -cos alpha cos beta, 0]]

sin ^ (2) alpha + sin ^ (2) (alpha-beta) -2sin alpha cos beta sin (alpha-beta) = sin ^ (2)

Evaluate: quad =|cos alpha cos beta cos alpha sin beta-sin alpha-sin beta cos beta0sin alpha cos beta sin alpha sin beta cos alpha|

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-MATRICES-MHT CET CORNER
  1. If A=[(1,1,0),(2,1,5),(1,2,1)] then a(11)A(21)+a(12)A(22)+a(13)A(23) i...

    Text Solution

    |

  2. If A=[(2,2),(-3,2)], B=[(0,-1),(1,0)] then (B^(-1)A^(-1))^(-1) is equa...

    Text Solution

    |

  3. If matrix A=[(1,2),(4,3)], such that AX=l, then X is equal to

    Text Solution

    |

  4. The multiplicative inverse of A = [(cos theta,-sin theta),(sin theta,c...

    Text Solution

    |

  5. The value of a for which system of equation , a^3x+(a+1)^3y+(a+2)^3z=0...

    Text Solution

    |

  6. Let A=[(cos theta, -sin theta),(- sin theta,-cos theta)] then the inve...

    Text Solution

    |

  7. If matrix A=[(a,b),(c,d)], then |A|^(-1) is equal to

    Text Solution

    |

  8. If A=[(3,2,4),(1,2,1),(3,2,6)] and A(ij) are the cofactors of a(ij), t...

    Text Solution

    |

  9. A=[(cos theta, -sin theta),(sin theta, cos theta)] and AB=BA=l, then B...

    Text Solution

    |

  10. The inverse matrix of A=[(0,1,2),(1,2,3),(3,1,1)] is

    Text Solution

    |

  11. The solutiion of (x,y,z) the equation [(-1,0,1),(-1,1,0),(0,-1,1)][(x)...

    Text Solution

    |

  12. For the system of equaltions : x+2y+3z=1 2x+y+3z=2 5x+5y+9z=4

    Text Solution

    |

  13. If A=[(cos^(2)alpha, cos alpha sin alpha),(cos alpha sin alpha, sin^(2...

    Text Solution

    |

  14. If A(alpha)=[(cos alpha, sin alpha),(-sin alpha, cos alpha)] then the ...

    Text Solution

    |

  15. If A=[(1,-1),(2,-1)] and B=[(1,a),(4,b)] and (A+B)^(2)=A^(2)+B^(2). ...

    Text Solution

    |

  16. If A+I=[(3,-2),(4,1)] then (A+I)(A-I) is equal to

    Text Solution

    |

  17. If A=[(x,y,z)],B=[(a,h,g),(h,b,f),(g,f,c)] and C=[(x),(y),(z)] Then ...

    Text Solution

    |

  18. If A=[(-2,4),(-1,2)] then A^(2) is equal to

    Text Solution

    |