Home
Class 12
MATHS
If A(alpha)=[(cos alpha, sin alpha),(-si...

If `A(alpha)=[(cos alpha, sin alpha),(-sin alpha, cos alpha)]` then the matrix `A^(2)(alpha)` is

A

`A(2 alpha)`

B

`A(alpha)`

C

`A(3 alpha)`

D

`A(4 alpha)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the matrix \( A^2(\alpha) \) where \[ A(\alpha) = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix}, \] we will multiply the matrix \( A(\alpha) \) by itself. ### Step-by-Step Solution: 1. **Write down the matrix multiplication**: We need to compute \( A(\alpha) \times A(\alpha) \): \[ A^2(\alpha) = A(\alpha) \cdot A(\alpha) = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \cdot \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix}. \] 2. **Calculate the elements of the resulting matrix**: - **First row, first column**: \[ (\cos \alpha)(\cos \alpha) + (\sin \alpha)(-\sin \alpha) = \cos^2 \alpha - \sin^2 \alpha. \] - **First row, second column**: \[ (\cos \alpha)(\sin \alpha) + (\sin \alpha)(\cos \alpha) = \cos \alpha \sin \alpha + \sin \alpha \cos \alpha = 2 \cos \alpha \sin \alpha. \] - **Second row, first column**: \[ (-\sin \alpha)(\cos \alpha) + (\cos \alpha)(-\sin \alpha) = -\sin \alpha \cos \alpha - \sin \alpha \cos \alpha = -2 \sin \alpha \cos \alpha. \] - **Second row, second column**: \[ (-\sin \alpha)(\sin \alpha) + (\cos \alpha)(\cos \alpha) = -\sin^2 \alpha + \cos^2 \alpha = \cos^2 \alpha - \sin^2 \alpha. \] 3. **Combine the results into the final matrix**: Putting all the calculated elements together, we have: \[ A^2(\alpha) = \begin{pmatrix} \cos^2 \alpha - \sin^2 \alpha & 2 \cos \alpha \sin \alpha \\ -2 \sin \alpha \cos \alpha & \cos^2 \alpha - \sin^2 \alpha \end{pmatrix}. \] 4. **Simplify the matrix**: We can recognize that: \[ \cos^2 \alpha - \sin^2 \alpha = \cos(2\alpha) \] and \[ 2 \cos \alpha \sin \alpha = \sin(2\alpha). \] Therefore, we can rewrite the matrix as: \[ A^2(\alpha) = \begin{pmatrix} \cos(2\alpha) & \sin(2\alpha) \\ -\sin(2\alpha) & \cos(2\alpha) \end{pmatrix}. \] ### Final Answer: \[ A^2(\alpha) = \begin{pmatrix} \cos(2\alpha) & \sin(2\alpha) \\ -\sin(2\alpha) & \cos(2\alpha) \end{pmatrix}. \]

To find the matrix \( A^2(\alpha) \) where \[ A(\alpha) = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix}, \] we will multiply the matrix \( A(\alpha) \) by itself. ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MISCELLANEOUS PROBLEMS|49 Videos
  • MATHEMATICAL LOGIC

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET CORNER|22 Videos
  • MHTCET 2007

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MATHEMATICS|50 Videos

Similar Questions

Explore conceptually related problems

If A_(alpha)=[[cos alpha,sin alpha-sin alpha,cos alpha]]. Prove that

A=[[Cos alpha,sin alpha],[-Sin alpha,cos alpha]] then A^(2)

If A(alpha)=[[cos alpha,sin alpha],[-sin alpha,cos alpha]] then A(alpha)A(beta)

A=[[cos alpha,sin alpha],[-sin alpha,cos alpha]] , then find | A |

If A = [(cos alpha,sin alpha),(-sin alpha,cos alpha)] , then A^(10) = .........

If A_(alpha)=[cos alpha sin alpha-sin alpha cos alpha], then prove that (A_(alpha))^(n)=[cositive in n alpha-s in n alpha cos n alpha] for every positive integer n.

If A=[cos alpha sin alpha-sin alpha cos alpha], then verify that A^(T)A=I_(2)

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-MATRICES-MHT CET CORNER
  1. If A=[(1,1,0),(2,1,5),(1,2,1)] then a(11)A(21)+a(12)A(22)+a(13)A(23) i...

    Text Solution

    |

  2. If A=[(2,2),(-3,2)], B=[(0,-1),(1,0)] then (B^(-1)A^(-1))^(-1) is equa...

    Text Solution

    |

  3. If matrix A=[(1,2),(4,3)], such that AX=l, then X is equal to

    Text Solution

    |

  4. The multiplicative inverse of A = [(cos theta,-sin theta),(sin theta,c...

    Text Solution

    |

  5. The value of a for which system of equation , a^3x+(a+1)^3y+(a+2)^3z=0...

    Text Solution

    |

  6. Let A=[(cos theta, -sin theta),(- sin theta,-cos theta)] then the inve...

    Text Solution

    |

  7. If matrix A=[(a,b),(c,d)], then |A|^(-1) is equal to

    Text Solution

    |

  8. If A=[(3,2,4),(1,2,1),(3,2,6)] and A(ij) are the cofactors of a(ij), t...

    Text Solution

    |

  9. A=[(cos theta, -sin theta),(sin theta, cos theta)] and AB=BA=l, then B...

    Text Solution

    |

  10. The inverse matrix of A=[(0,1,2),(1,2,3),(3,1,1)] is

    Text Solution

    |

  11. The solutiion of (x,y,z) the equation [(-1,0,1),(-1,1,0),(0,-1,1)][(x)...

    Text Solution

    |

  12. For the system of equaltions : x+2y+3z=1 2x+y+3z=2 5x+5y+9z=4

    Text Solution

    |

  13. If A=[(cos^(2)alpha, cos alpha sin alpha),(cos alpha sin alpha, sin^(2...

    Text Solution

    |

  14. If A(alpha)=[(cos alpha, sin alpha),(-sin alpha, cos alpha)] then the ...

    Text Solution

    |

  15. If A=[(1,-1),(2,-1)] and B=[(1,a),(4,b)] and (A+B)^(2)=A^(2)+B^(2). ...

    Text Solution

    |

  16. If A+I=[(3,-2),(4,1)] then (A+I)(A-I) is equal to

    Text Solution

    |

  17. If A=[(x,y,z)],B=[(a,h,g),(h,b,f),(g,f,c)] and C=[(x),(y),(z)] Then ...

    Text Solution

    |

  18. If A=[(-2,4),(-1,2)] then A^(2) is equal to

    Text Solution

    |