Home
Class 12
MATHS
If A=[(-2,4),(-1,2)] then A^(2) is equal...

If `A=[(-2,4),(-1,2)]` then `A^(2)` is equal to

A

null matrix

B

unit matrix

C

`[(1,0),(0,1)]`

D

`[(0,0),(0,1)]`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( A^2 \) for the matrix \( A = \begin{pmatrix} -2 & 4 \\ -1 & 2 \end{pmatrix} \), we will perform matrix multiplication of \( A \) with itself. ### Step-by-Step Solution: 1. **Write down the matrix \( A \)**: \[ A = \begin{pmatrix} -2 & 4 \\ -1 & 2 \end{pmatrix} \] 2. **Set up the multiplication for \( A^2 \)**: \[ A^2 = A \times A = \begin{pmatrix} -2 & 4 \\ -1 & 2 \end{pmatrix} \times \begin{pmatrix} -2 & 4 \\ -1 & 2 \end{pmatrix} \] 3. **Calculate the elements of the resulting matrix**: - **Element at position (1,1)**: \[ A_{11} = (-2) \times (-2) + (4) \times (-1) = 4 - 4 = 0 \] - **Element at position (1,2)**: \[ A_{12} = (-2) \times (4) + (4) \times (2) = -8 + 8 = 0 \] - **Element at position (2,1)**: \[ A_{21} = (-1) \times (-2) + (2) \times (-1) = 2 - 2 = 0 \] - **Element at position (2,2)**: \[ A_{22} = (-1) \times (4) + (2) \times (2) = -4 + 4 = 0 \] 4. **Combine the results into the resulting matrix**: \[ A^2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \] ### Final Result: \[ A^2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \]

To find \( A^2 \) for the matrix \( A = \begin{pmatrix} -2 & 4 \\ -1 & 2 \end{pmatrix} \), we will perform matrix multiplication of \( A \) with itself. ### Step-by-Step Solution: 1. **Write down the matrix \( A \)**: \[ A = \begin{pmatrix} -2 & 4 \\ -1 & 2 \end{pmatrix} \] ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MISCELLANEOUS PROBLEMS|49 Videos
  • MATHEMATICAL LOGIC

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET CORNER|22 Videos
  • MHTCET 2007

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MATHEMATICS|50 Videos

Similar Questions

Explore conceptually related problems

If A=[(1,2),(3,4)] then A^(-1) is equal to

If A =[(1,2),(3,4)] then A^(2)-5A equals

If A=[(1,2,2),(2,1,2),(2,2,1)] then A^(2)-4A is equal to

If [ (1, 2),(-2,-b)]+ [(a,4),(3,2)]=[(5,6),(1,0)] , then a^(2) + b^(2) is equal to

(1/2)^-(4) is equal to

2/3-1/4 is equal to

If A+2B=[(2,-4),(1,6)],A prime+B prime=[(1,2),(0,-1)], then A is equal to

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-MATRICES-MHT CET CORNER
  1. If A=[(1,1,0),(2,1,5),(1,2,1)] then a(11)A(21)+a(12)A(22)+a(13)A(23) i...

    Text Solution

    |

  2. If A=[(2,2),(-3,2)], B=[(0,-1),(1,0)] then (B^(-1)A^(-1))^(-1) is equa...

    Text Solution

    |

  3. If matrix A=[(1,2),(4,3)], such that AX=l, then X is equal to

    Text Solution

    |

  4. The multiplicative inverse of A = [(cos theta,-sin theta),(sin theta,c...

    Text Solution

    |

  5. The value of a for which system of equation , a^3x+(a+1)^3y+(a+2)^3z=0...

    Text Solution

    |

  6. Let A=[(cos theta, -sin theta),(- sin theta,-cos theta)] then the inve...

    Text Solution

    |

  7. If matrix A=[(a,b),(c,d)], then |A|^(-1) is equal to

    Text Solution

    |

  8. If A=[(3,2,4),(1,2,1),(3,2,6)] and A(ij) are the cofactors of a(ij), t...

    Text Solution

    |

  9. A=[(cos theta, -sin theta),(sin theta, cos theta)] and AB=BA=l, then B...

    Text Solution

    |

  10. The inverse matrix of A=[(0,1,2),(1,2,3),(3,1,1)] is

    Text Solution

    |

  11. The solutiion of (x,y,z) the equation [(-1,0,1),(-1,1,0),(0,-1,1)][(x)...

    Text Solution

    |

  12. For the system of equaltions : x+2y+3z=1 2x+y+3z=2 5x+5y+9z=4

    Text Solution

    |

  13. If A=[(cos^(2)alpha, cos alpha sin alpha),(cos alpha sin alpha, sin^(2...

    Text Solution

    |

  14. If A(alpha)=[(cos alpha, sin alpha),(-sin alpha, cos alpha)] then the ...

    Text Solution

    |

  15. If A=[(1,-1),(2,-1)] and B=[(1,a),(4,b)] and (A+B)^(2)=A^(2)+B^(2). ...

    Text Solution

    |

  16. If A+I=[(3,-2),(4,1)] then (A+I)(A-I) is equal to

    Text Solution

    |

  17. If A=[(x,y,z)],B=[(a,h,g),(h,b,f),(g,f,c)] and C=[(x),(y),(z)] Then ...

    Text Solution

    |

  18. If A=[(-2,4),(-1,2)] then A^(2) is equal to

    Text Solution

    |