Home
Class 12
MATHS
In the curve x^(m+n)=a^(m-n)y^(2n) , pro...

In the curve `x^(m+n)=a^(m-n)y^(2n)` , prove that the `m t h` power of the sub-tangent varies as the `n t h` power of the sub-normal.

A

`m`

B

`n`

C

`1//n`

D

`1//m`

Text Solution

Verified by Experts

The correct Answer is:
B

Given `x^(m+n)=a^(m-n)y^(2n)`
On taking log both sides, we get
`(m+n)logx(m-n)log a +2n log y`
On differentiating both sides w.r.t `x` we get
`((m+n))/x=0+(2n)/y(dy)/(dx)implies(dy)/(dx)=((m+n))/(2n)(y/x)`
Now, `(("subtangent")^(m))/(("subnormal")^(n))=((y(dx)/(dy))^(m))/((y(dy)/(dx))^(n))=((y^(m-n))/((dy)/(dx))^(m+n))`
`=(x^(m+n))/(((m+n)/(2n))^(m+n)y^(2n))`
[ On putting the value of `(dy)/(dx)`]
`=((2n)/(m+n))^(m+n)xxa^(m-n) [ :' (x^(m+n))/(y^(2n))=a^(m-n)]`
`=` Constant it is [ `:.` independent of `x` and `y` ]
`implies("Subtangent")^(m)prop("Subnormal")^(n)`
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF DERIVATIVES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MISCELLANEOUS PROBLEMS|80 Videos
  • APPLICATIONS OF DERIVATIVES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET CORNER|21 Videos
  • APPLICATIONS OF DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|6 Videos
  • BINOMIAL DISTRIBUTION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|6 Videos

Similar Questions

Explore conceptually related problems

In the curve x^(m+n)=a^(m-n)y^(2n), prove that the mth power of the sub-tangent varies as the nth power of the sub-normal.

Show that for the curve by^(2)=(x+a)^(3), the square of the sub-tangent varies as the sub- normal.

If x^(m)y^(n)=(x+y)^(m+n)

At any point on the curve y=f(x) ,the sub-tangent, the ordinate of the point and the sub-normal are in

If x^(m)y^(n)=(x+y)^(m+n), prove that (dy)/(dx)=(y)/(x)

If x^(m)y^(n)=(x+y)^(m+n), prove that (dy)/(dx)=(y)/(x)

If x^(m)y^(n)=(x+y)^(m+n), prove that (dy)/(dx)=(y)/(x)

If x^(m)y^(n)=(x+y)^(m+n) prove that (dy)/(dx)=(y)/(x)

Prove that for the curve y=be^(x//a) , the subtangent is of constant length and the sub-normal varies as the square of the ordinate .

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-APPLICATIONS OF DERIVATIVES-MHT CET CORNER
  1. In the curve x^(m+n)=a^(m-n)y^(2n) , prove that the m t h power of the...

    Text Solution

    |

  2. If the Rolle's theorem for f(x)=e^(x)(sin x-cosx) is verified on [(pi)...

    Text Solution

    |

  3. The approximate value of f(x)=x^(3)+5x^(2)-7x+9 at x=1.1 is

    Text Solution

    |

  4. एक कण वक्र 6y= x^3+ 2 के अनुगत गति कर रहा है वक्र पर उन बिंदुओं को ज...

    Text Solution

    |

  5. All points on the curve y^(2)=4a(x+a" sin"(x)/(a)) at which the tangen...

    Text Solution

    |

  6. The length of normal at any point to the curve, y=c cosh(x/c) is

    Text Solution

    |

  7. The height of right circular cylinder of maximum volume in a sphere of...

    Text Solution

    |

  8. x,के सभी वास्तविक मानों के लिए (1-x+x^2)/(1+x+x^2) का न्यूनतम मान है ...

    Text Solution

    |

  9. If x+y=k is normal to y^2=12 x , then k is 3 (b) 9 (c) -9 (d) -3

    Text Solution

    |

  10. A particle moves along a straight line according to the law s=16-2t+3t...

    Text Solution

    |

  11. The equation of the tangent at (2,3) on the curve y^2=a x^3+b is y=4x-...

    Text Solution

    |

  12. The equation of motion of a particle moving along a straight line is s...

    Text Solution

    |

  13. The equation of the tangent to the curve y=4xe^(x) at (-1,(-4)/e) is

    Text Solution

    |

  14. The abscissa of the points, where the tangent to curve y=x^(3)-3x^(2)-...

    Text Solution

    |

  15. The point of the curve y^(2)=2(x-3) at which the normal is parallel to...

    Text Solution

    |

  16. Maximum area of a reactangle which can be inscribed in a circle of a...

    Text Solution

    |

  17. If the function f(x)=2x^3-9a x^2+12 x^2x+1,w h e r ea >0, attains its ...

    Text Solution

    |

  18. If f(x)= kx-sin x is monotonically increasing then

    Text Solution

    |

  19. If a particle moves such that the displacement is proportional to the ...

    Text Solution

    |

  20. f(x)=tan^(-1)(sinx+cosx), x gt0 is always and increasing function on t...

    Text Solution

    |

  21. A ladder 10 m long rests against a vertical wall with the lower end on...

    Text Solution

    |