Home
Class 12
MATHS
The function f(x)=log(1+x)-2*x/(2+x) is ...

The function `f(x)=log(1+x)-2*x/(2+x)` is increasing on

A

`(-1,oo)`

B

`(-oo,0)`

C

`(-oo,oo)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine the intervals where the function \( f(x) = \log(1+x) - \frac{2x}{2+x} \) is increasing, we need to find the derivative \( f'(x) \) and analyze where it is greater than zero. ### Step 1: Differentiate the function We start by differentiating \( f(x) \): \[ f'(x) = \frac{d}{dx} \left( \log(1+x) \right) - \frac{d}{dx} \left( \frac{2x}{2+x} \right) \] Using the derivative of \( \log(1+x) \): \[ \frac{d}{dx} \left( \log(1+x) \right) = \frac{1}{1+x} \] For the second term, we apply the quotient rule: \[ \frac{d}{dx} \left( \frac{2x}{2+x} \right) = \frac{(2+x)(2) - 2x(1)}{(2+x)^2} = \frac{2(2+x) - 2x}{(2+x)^2} = \frac{4}{(2+x)^2} \] Thus, we have: \[ f'(x) = \frac{1}{1+x} - \frac{4}{(2+x)^2} \] ### Step 2: Set the derivative greater than zero To find where \( f(x) \) is increasing, we set \( f'(x) > 0 \): \[ \frac{1}{1+x} - \frac{4}{(2+x)^2} > 0 \] ### Step 3: Solve the inequality Rearranging gives: \[ \frac{1}{1+x} > \frac{4}{(2+x)^2} \] Cross-multiplying (valid since both sides are positive for \( x > -1 \)): \[ (2+x)^2 > 4(1+x) \] Expanding both sides: \[ 4 + 4x + x^2 > 4 + 4x \] This simplifies to: \[ x^2 > 0 \] ### Step 4: Determine the intervals The inequality \( x^2 > 0 \) holds for all \( x \neq 0 \). However, we also need to consider the domain of \( f(x) \). The function \( \log(1+x) \) is defined for \( x > -1 \). Therefore, we combine these results: - \( f'(x) > 0 \) for \( x \in (-1, 0) \) and \( x \in (0, \infty) \). - The function is defined for \( x > -1 \). Thus, the function \( f(x) \) is increasing on the interval: \[ (-1, 0) \cup (0, \infty) \] ### Final Answer The function \( f(x) = \log(1+x) - \frac{2x}{2+x} \) is increasing on the intervals \( (-1, 0) \) and \( (0, \infty) \). ---

To determine the intervals where the function \( f(x) = \log(1+x) - \frac{2x}{2+x} \) is increasing, we need to find the derivative \( f'(x) \) and analyze where it is greater than zero. ### Step 1: Differentiate the function We start by differentiating \( f(x) \): \[ f'(x) = \frac{d}{dx} \left( \log(1+x) \right) - \frac{d}{dx} \left( \frac{2x}{2+x} \right) \] ...
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF DERIVATIVES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MISCELLANEOUS PROBLEMS|80 Videos
  • APPLICATIONS OF DERIVATIVES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET CORNER|21 Videos
  • APPLICATIONS OF DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|6 Videos
  • BINOMIAL DISTRIBUTION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|6 Videos

Similar Questions

Explore conceptually related problems

Find the intervals in which the function f(x)=log(1+x)-(2x)/(2+x) is increasing or decreasing.

The function f(x)=log (1+x)-(2+x) is increasing in

The function f(x)=log x-(2x)/(x+2) is increasing for all A) x in(-oo,0) , B) x in(-oo,1) C) x in(-1,oo) D) x in(0,oo)

The function log (1+x) - (2x)/(x+2) is increasing in the interval:

the function f(x)=(log x)/(x) is increasing in the interval

Prove that the function f(x)=(log)_(e)x is increasing on (0,oo)

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-APPLICATIONS OF DERIVATIVES-MHT CET CORNER
  1. The function f(x)=log(1+x)-2*x/(2+x) is increasing on

    Text Solution

    |

  2. If the Rolle's theorem for f(x)=e^(x)(sin x-cosx) is verified on [(pi)...

    Text Solution

    |

  3. The approximate value of f(x)=x^(3)+5x^(2)-7x+9 at x=1.1 is

    Text Solution

    |

  4. एक कण वक्र 6y= x^3+ 2 के अनुगत गति कर रहा है वक्र पर उन बिंदुओं को ज...

    Text Solution

    |

  5. All points on the curve y^(2)=4a(x+a" sin"(x)/(a)) at which the tangen...

    Text Solution

    |

  6. The length of normal at any point to the curve, y=c cosh(x/c) is

    Text Solution

    |

  7. The height of right circular cylinder of maximum volume in a sphere of...

    Text Solution

    |

  8. x,के सभी वास्तविक मानों के लिए (1-x+x^2)/(1+x+x^2) का न्यूनतम मान है ...

    Text Solution

    |

  9. If x+y=k is normal to y^2=12 x , then k is 3 (b) 9 (c) -9 (d) -3

    Text Solution

    |

  10. A particle moves along a straight line according to the law s=16-2t+3t...

    Text Solution

    |

  11. The equation of the tangent at (2,3) on the curve y^2=a x^3+b is y=4x-...

    Text Solution

    |

  12. The equation of motion of a particle moving along a straight line is s...

    Text Solution

    |

  13. The equation of the tangent to the curve y=4xe^(x) at (-1,(-4)/e) is

    Text Solution

    |

  14. The abscissa of the points, where the tangent to curve y=x^(3)-3x^(2)-...

    Text Solution

    |

  15. The point of the curve y^(2)=2(x-3) at which the normal is parallel to...

    Text Solution

    |

  16. Maximum area of a reactangle which can be inscribed in a circle of a...

    Text Solution

    |

  17. If the function f(x)=2x^3-9a x^2+12 x^2x+1,w h e r ea >0, attains its ...

    Text Solution

    |

  18. If f(x)= kx-sin x is monotonically increasing then

    Text Solution

    |

  19. If a particle moves such that the displacement is proportional to the ...

    Text Solution

    |

  20. f(x)=tan^(-1)(sinx+cosx), x gt0 is always and increasing function on t...

    Text Solution

    |

  21. A ladder 10 m long rests against a vertical wall with the lower end on...

    Text Solution

    |