Home
Class 12
MATHS
f(x)=((e^(2x)-1)/(e^(2x)+1)) is...

`f(x)=((e^(2x)-1)/(e^(2x)+1))` is

A

an increasing function

B

a decreasing function

C

an even function

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine the nature of the function \( f(x) = \frac{e^{2x} - 1}{e^{2x} + 1} \), we will check if it is an even function, an odd function, or if it is increasing or decreasing. ### Step 1: Check if the function is odd or even 1. **Calculate \( f(-x) \)**: \[ f(-x) = \frac{e^{-2x} - 1}{e^{-2x} + 1} \] We can rewrite \( e^{-2x} \) as \( \frac{1}{e^{2x}} \): \[ f(-x) = \frac{\frac{1}{e^{2x}} - 1}{\frac{1}{e^{2x}} + 1} = \frac{1 - e^{2x}}{1 + e^{2x}} \] 2. **Rewrite \( f(-x) \)**: \[ f(-x) = \frac{-(e^{2x} - 1)}{e^{2x} + 1} = -\frac{e^{2x} - 1}{e^{2x} + 1} = -f(x) \] Since \( f(-x) = -f(x) \), the function is **odd**. ### Step 2: Find the derivative \( f'(x) \) To determine if the function is increasing or decreasing, we need to find the derivative \( f'(x) \) using the quotient rule: \[ f'(x) = \frac{u'v - uv'}{v^2} \] where \( u = e^{2x} - 1 \) and \( v = e^{2x} + 1 \). 1. **Calculate \( u' \) and \( v' \)**: - \( u' = 2e^{2x} \) - \( v' = 2e^{2x} \) 2. **Apply the quotient rule**: \[ f'(x) = \frac{(2e^{2x})(e^{2x} + 1) - (e^{2x} - 1)(2e^{2x})}{(e^{2x} + 1)^2} \] 3. **Simplify**: \[ f'(x) = \frac{2e^{2x}(e^{2x} + 1) - 2e^{2x}(e^{2x} - 1)}{(e^{2x} + 1)^2} \] \[ = \frac{2e^{2x}(e^{2x} + 1 - e^{2x} + 1)}{(e^{2x} + 1)^2} \] \[ = \frac{2e^{2x}(2)}{(e^{2x} + 1)^2} = \frac{4e^{2x}}{(e^{2x} + 1)^2} \] ### Step 3: Analyze the sign of \( f'(x) \) Since \( e^{2x} > 0 \) for all \( x \), we have: \[ f'(x) = \frac{4e^{2x}}{(e^{2x} + 1)^2} > 0 \] This implies that \( f'(x) > 0 \) for all \( x \in \mathbb{R} \), meaning that the function is **increasing**. ### Conclusion The function \( f(x) = \frac{e^{2x} - 1}{e^{2x} + 1} \) is an **odd function** and is **increasing** for all \( x \in \mathbb{R}**.

To determine the nature of the function \( f(x) = \frac{e^{2x} - 1}{e^{2x} + 1} \), we will check if it is an even function, an odd function, or if it is increasing or decreasing. ### Step 1: Check if the function is odd or even 1. **Calculate \( f(-x) \)**: \[ f(-x) = \frac{e^{-2x} - 1}{e^{-2x} + 1} \] We can rewrite \( e^{-2x} \) as \( \frac{1}{e^{2x}} \): ...
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF DERIVATIVES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MISCELLANEOUS PROBLEMS|80 Videos
  • APPLICATIONS OF DERIVATIVES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET CORNER|21 Videos
  • APPLICATIONS OF DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|6 Videos
  • BINOMIAL DISTRIBUTION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|6 Videos

Similar Questions

Explore conceptually related problems

tan^(-1)((e^(2x)+1)/(e^(2x)-1))

Statement -1 : If I_(1)=int(e^(x))/(e^(4x)+e^(2x)+1)dx and I_(2)=int(e^(-x))/(e^(-4x)+e^(-2x)+1)dx , then I_(2)-I_(1)=(1)/(2)log((e^(2x)-e^(x)+1)/(e^(2x)+e^(x)+1))+C where C is an arbitrary constant. Statement -2 : A primitive of f(x) =(x^(2)-1)/(x^(4)+x^(2)+1) is (1)/(2)log((x^(2)-x+1)/(x^(2)+x+1)) .

Column I, a) int(e^(2x)-1)/(e^(2x)+1)dx is equal to b) int1/((e^x+e^(-x))^2)dx is equal to c) int(e^(-x))/(1+e^x)dx is equal to d) int1/(sqrt(1-e^(2x)))dx is equal to COLUMN II p) x-log[1+sqrt(1-e^(2x)]+c q) log(e^x+1)-x-e^(-x)+c r) log(e^(2x)+1)-x+c s) -1/(2(e^(2x)+1))+c

If f(x)={:{((e^(1/x)-1)/(e^(1/x)+1)", for " x !=0),(1", for " x=0):} , then f is

the function f(x)=(x)/(e^(x)-1)+(x)/(2)+1 is

int (e^(2x)-1)/(e^(2x)+1) dx=?

int(e^(2x)+1)/(e^(2x)-1)dx=

The function f:R^(+)rarr(1,e) defined by f(x)=(x^(2)+e)/(x^(2)+1) is

If f(x)={(e^(x+1)-e^(x),x =1)

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-APPLICATIONS OF DERIVATIVES-MHT CET CORNER
  1. f(x)=((e^(2x)-1)/(e^(2x)+1)) is

    Text Solution

    |

  2. If the Rolle's theorem for f(x)=e^(x)(sin x-cosx) is verified on [(pi)...

    Text Solution

    |

  3. The approximate value of f(x)=x^(3)+5x^(2)-7x+9 at x=1.1 is

    Text Solution

    |

  4. एक कण वक्र 6y= x^3+ 2 के अनुगत गति कर रहा है वक्र पर उन बिंदुओं को ज...

    Text Solution

    |

  5. All points on the curve y^(2)=4a(x+a" sin"(x)/(a)) at which the tangen...

    Text Solution

    |

  6. The length of normal at any point to the curve, y=c cosh(x/c) is

    Text Solution

    |

  7. The height of right circular cylinder of maximum volume in a sphere of...

    Text Solution

    |

  8. x,के सभी वास्तविक मानों के लिए (1-x+x^2)/(1+x+x^2) का न्यूनतम मान है ...

    Text Solution

    |

  9. If x+y=k is normal to y^2=12 x , then k is 3 (b) 9 (c) -9 (d) -3

    Text Solution

    |

  10. A particle moves along a straight line according to the law s=16-2t+3t...

    Text Solution

    |

  11. The equation of the tangent at (2,3) on the curve y^2=a x^3+b is y=4x-...

    Text Solution

    |

  12. The equation of motion of a particle moving along a straight line is s...

    Text Solution

    |

  13. The equation of the tangent to the curve y=4xe^(x) at (-1,(-4)/e) is

    Text Solution

    |

  14. The abscissa of the points, where the tangent to curve y=x^(3)-3x^(2)-...

    Text Solution

    |

  15. The point of the curve y^(2)=2(x-3) at which the normal is parallel to...

    Text Solution

    |

  16. Maximum area of a reactangle which can be inscribed in a circle of a...

    Text Solution

    |

  17. If the function f(x)=2x^3-9a x^2+12 x^2x+1,w h e r ea >0, attains its ...

    Text Solution

    |

  18. If f(x)= kx-sin x is monotonically increasing then

    Text Solution

    |

  19. If a particle moves such that the displacement is proportional to the ...

    Text Solution

    |

  20. f(x)=tan^(-1)(sinx+cosx), x gt0 is always and increasing function on t...

    Text Solution

    |

  21. A ladder 10 m long rests against a vertical wall with the lower end on...

    Text Solution

    |