Home
Class 12
MATHS
For x epsilon(0,(5pi)/2), definite f(x)...

For `x epsilon(0,(5pi)/2)`, definite `f(x)=int_(0)^(x)sqrt(t) sin t dt`. Then `f` has

A

local minimum at `pi` and `2pi`

B

local minimum at `pi` and local maximum at `2pi`

C

local maximum at `pi` and local minimum at `2pi`

D

local maximum at `pi` and `2pi`

Text Solution

Verified by Experts

The correct Answer is:
C

Given `f(x)=int_(0)^(x)sqrt(t) sin t dt,` where `x epsilon (0,(5pi)/2)`
`impliesf'(x)={sqrt(x)sin x-0}`…………….i
[Using Newton-Leibnits formula]
Put`f'(x)=sqrt(x) sin x=0 impliessin x=0`
`impliesx=pi , 2pi`
Now `f''(x)=sqrt(x) cos x+1/(2sqrt(x) sin x`
At `x=pi,f''(pi)=-sqrt(pi) lt 0`
`:.` local maximum at `x=pi`
At `x=2pi, f''(2pi)=sqrt(2pi)gt0`
So local minimum at `x=2pi`
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF DERIVATIVES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MISCELLANEOUS PROBLEMS|80 Videos
  • APPLICATIONS OF DERIVATIVES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET CORNER|21 Videos
  • APPLICATIONS OF DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|6 Videos
  • BINOMIAL DISTRIBUTION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|6 Videos

Similar Questions

Explore conceptually related problems

If f(x) = int_(0)^(x)t sin t dt , then f'(x) is

For x in (0 , (5pi)/(2)) define f(x) = underset(0)overset(x)(int) sqrtt sin t dt Then has :

If f(x)=int_(0)^(x)tf(t)dt+2, then

int_(0)^(x)f(t)dt=x cos pi x then f(3)=

If f(x)=int_(0)^(x)(:t:)(sin x-sin t)backslash dt then

If f(x) =int_(0)^(x) sin^(4)t dt , then f(x+2pi) is equal to

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-APPLICATIONS OF DERIVATIVES-MHT CET CORNER
  1. For x epsilon(0,(5pi)/2), definite f(x)=int(0)^(x)sqrt(t) sin t dt. T...

    Text Solution

    |

  2. If the Rolle's theorem for f(x)=e^(x)(sin x-cosx) is verified on [(pi)...

    Text Solution

    |

  3. The approximate value of f(x)=x^(3)+5x^(2)-7x+9 at x=1.1 is

    Text Solution

    |

  4. एक कण वक्र 6y= x^3+ 2 के अनुगत गति कर रहा है वक्र पर उन बिंदुओं को ज...

    Text Solution

    |

  5. All points on the curve y^(2)=4a(x+a" sin"(x)/(a)) at which the tangen...

    Text Solution

    |

  6. The length of normal at any point to the curve, y=c cosh(x/c) is

    Text Solution

    |

  7. The height of right circular cylinder of maximum volume in a sphere of...

    Text Solution

    |

  8. x,के सभी वास्तविक मानों के लिए (1-x+x^2)/(1+x+x^2) का न्यूनतम मान है ...

    Text Solution

    |

  9. If x+y=k is normal to y^2=12 x , then k is 3 (b) 9 (c) -9 (d) -3

    Text Solution

    |

  10. A particle moves along a straight line according to the law s=16-2t+3t...

    Text Solution

    |

  11. The equation of the tangent at (2,3) on the curve y^2=a x^3+b is y=4x-...

    Text Solution

    |

  12. The equation of motion of a particle moving along a straight line is s...

    Text Solution

    |

  13. The equation of the tangent to the curve y=4xe^(x) at (-1,(-4)/e) is

    Text Solution

    |

  14. The abscissa of the points, where the tangent to curve y=x^(3)-3x^(2)-...

    Text Solution

    |

  15. The point of the curve y^(2)=2(x-3) at which the normal is parallel to...

    Text Solution

    |

  16. Maximum area of a reactangle which can be inscribed in a circle of a...

    Text Solution

    |

  17. If the function f(x)=2x^3-9a x^2+12 x^2x+1,w h e r ea >0, attains its ...

    Text Solution

    |

  18. If f(x)= kx-sin x is monotonically increasing then

    Text Solution

    |

  19. If a particle moves such that the displacement is proportional to the ...

    Text Solution

    |

  20. f(x)=tan^(-1)(sinx+cosx), x gt0 is always and increasing function on t...

    Text Solution

    |

  21. A ladder 10 m long rests against a vertical wall with the lower end on...

    Text Solution

    |