Home
Class 12
MATHS
A point on the parabola y^2=18 x at whic...

A point on the parabola `y^2=18 x` at which the ordinate increases at twice the rate of the abscissa is (2,6) (b) `(2,-6)` `(9/8,-9/2)` (d) `(9/8,9/2)`

A

`(2,4)`

B

`(2,-4)`

C

`(-9/8,9/2)`

D

`(9/8,9/2)`

Text Solution

Verified by Experts

The correct Answer is:
D

Given `y^(2)=18x`
`implies2y. (dy)/(dt)=18 (dx)/(dt)`
Given `(dy)/(dx)=2(dx)/(dt)`
`:.2y.2=18`
`impliesy=9/2`
From Eq (i) `(9/2)^(2)=18x`
`impliesx=81/(4xx18)`
`impliesx=9/8`
`:.` Required point is `(9/8,9/2)`.
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF DERIVATIVES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET CORNER|21 Videos
  • APPLICATIONS OF DERIVATIVES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET CORNER|21 Videos
  • APPLICATIONS OF DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|6 Videos
  • BINOMIAL DISTRIBUTION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|6 Videos

Similar Questions

Explore conceptually related problems

At what point of the parabola y^2=18x , does the ordinate increase at twice the rate of the abscissa ?

A point on the parabola y^(2)=18x at which the ordinate increases at twice the rate of the abscissa is (a)(2,6)(b)(2,-6)(c)((9)/(8),-(9)/(2))(d)((9)/(8),(9)/(2))

The point on the circle x^(2)+y^(2)=8 at which the abscissa and ordinate increase at the same rate is

The co-ordinates of a point on the parabola y^(2)=8x whose ordinate is twice of abscissa, is :

The points of the ellipse 16x^(2)+9y^(2)=400 at which the ordinate decreases at the same rate at which the abcissa increases is

The point on the ellips 9x^(2) +16y^(2)=400 at which the abscissa and ordinate decrease at the same rate is

At what point of the parabola x^(2)=9y is the abscissa three xx that of ordinate?

The point(s) on the curve y=x^(2) ,at which y -coordinate is changing six times as fast as x - coordinate is/are (a) (2,4) (b) (3,9) (c) (3,9) , (9,3) (d) (6,2)

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-APPLICATIONS OF DERIVATIVES-MISCELLANEOUS PROBLEMS
  1. The function x^(5)-5x^(4)+5x^(3)-1 is

    Text Solution

    |

  2. If there is an error of k % in measuring the edge of a cube, then the ...

    Text Solution

    |

  3. A point on the parabola y^2=18 x at which the ordinate increases at tw...

    Text Solution

    |

  4. The maximum real number, which most exceeds its cube, is

    Text Solution

    |

  5. The two parts of 100 for which the sum of double of first and square o...

    Text Solution

    |

  6. A particle is moving on a straight line and its distance x cms from a ...

    Text Solution

    |

  7. A stone, vertically thrown upward is moving in a line. Its equation of...

    Text Solution

    |

  8. A triangular park is enclosed on two sides by a fence and on the third...

    Text Solution

    |

  9. Find the area of the greatest rectangle that can be inscribed in th...

    Text Solution

    |

  10. The function f defined by f(x)=4x^(4)-2x+1 is increasing for

    Text Solution

    |

  11. The radius of a cylinder is increasing at the rate 2cm/sec. and its...

    Text Solution

    |

  12. The function f(x)=(x-1)^(2) has a minimum at x is equal to

    Text Solution

    |

  13. एक स्थिर झील में एक पत्थर डाला जाता है ओर तरंगों व्रतों में 5 cm /s क...

    Text Solution

    |

  14. If the line a x+b y+c=0 is a normal to the curve x y=1, then a >0,b >...

    Text Solution

    |

  15. If the function f(x)=2x^3-9a x^2+12 x^2x+1,w h e r ea >0, attains its ...

    Text Solution

    |

  16. For the curve y^(n)=a^(n-1)x if the subnormal at any point is a consta...

    Text Solution

    |

  17. The maximum value of logx is

    Text Solution

    |

  18. The length of subtangent to the curve x^2 + xy + y^2=7 at the point (1...

    Text Solution

    |

  19. The displacement s of a particle at time t is given by s=alpha sin ome...

    Text Solution

    |

  20. Find the point on the curve y = 2x^(2) - 6x - 4 at which the tangent i...

    Text Solution

    |