Home
Class 12
MATHS
The approximate value of f(x)=x^(3)+5x^(...

The approximate value of `f(x)=x^(3)+5x^(2)-7x+9` at `x=1.1` is

A

8.6

B

8.5

C

8.4

D

8.3

Text Solution

Verified by Experts

The correct Answer is:
A

Given `f(x)=x^(3)+5x^(2)-7x+9`
On differentiating both sides w.r. t `x` we get
`f'(x)=3x^(2)+10x-7`
Let `x=1` and `DeltaA=0.1` so that
`f(x+Deltax)=f(1+0.1)=f(1.1)`
We know that
`f(x+Deltax)=f(x)+Deltaxf'(x)`
`=x^(3)+5x^(2)-7x+9+Deltax xx (3x^(2)+10x-7)`
Put `x=1` and `Deltax=0.1` we get
`f(1+0.1)=1^(3)+5(1)^(2)-7(1)+9+0.1xx(3xx1^(2)+10xx1-7)`
`impliesf(1.1)=1+5-7+9+0.1(3+10-7)`
`=8+0.1(6)`
`=8+0.6=8.6`
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF DERIVATIVES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MISCELLANEOUS PROBLEMS|80 Videos
  • APPLICATIONS OF DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|6 Videos
  • BINOMIAL DISTRIBUTION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|6 Videos

Similar Questions

Explore conceptually related problems

Find the approximate values of : f(x)=x^(3)+5x^(2)-7x+10" at "x=1.1 .

find the approximate value of f(x)=2x^(3)+7x^(2)-2x+3 when x=2.002

Find the approximate values of : f(x)=x^(3)-3x+5" at "x=1.99.

Find the approximate value of f(5.001) where f(x)=x^(3)-7x^(2)+15.

Find the approximate value of f(5.001) ,where f(x)=x^(3)-7x^(2)+15

Find the approximate value of f(3.03) where f(x) = 3x^(2) + 5x + 6 .

Find the approximate value of f(3.01) when y = f(x) = x^(2)+3x+1 .

Find the approximate value of f(2.01) where f(x) =x^(3)-4x+7 .

Find the approximate value of f(5. 001) , where f(x)=x^3-7x^2+15 .

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-APPLICATIONS OF DERIVATIVES-MHT CET CORNER
  1. If the Rolle's theorem for f(x)=e^(x)(sin x-cosx) is verified on [(pi)...

    Text Solution

    |

  2. The approximate value of f(x)=x^(3)+5x^(2)-7x+9 at x=1.1 is

    Text Solution

    |

  3. एक कण वक्र 6y= x^3+ 2 के अनुगत गति कर रहा है वक्र पर उन बिंदुओं को ज...

    Text Solution

    |

  4. All points on the curve y^(2)=4a(x+a" sin"(x)/(a)) at which the tangen...

    Text Solution

    |

  5. The length of normal at any point to the curve, y=c cosh(x/c) is

    Text Solution

    |

  6. The height of right circular cylinder of maximum volume in a sphere of...

    Text Solution

    |

  7. x,के सभी वास्तविक मानों के लिए (1-x+x^2)/(1+x+x^2) का न्यूनतम मान है ...

    Text Solution

    |

  8. If x+y=k is normal to y^2=12 x , then k is 3 (b) 9 (c) -9 (d) -3

    Text Solution

    |

  9. A particle moves along a straight line according to the law s=16-2t+3t...

    Text Solution

    |

  10. The equation of the tangent at (2,3) on the curve y^2=a x^3+b is y=4x-...

    Text Solution

    |

  11. The equation of motion of a particle moving along a straight line is s...

    Text Solution

    |

  12. The equation of the tangent to the curve y=4xe^(x) at (-1,(-4)/e) is

    Text Solution

    |

  13. The abscissa of the points, where the tangent to curve y=x^(3)-3x^(2)-...

    Text Solution

    |

  14. The point of the curve y^(2)=2(x-3) at which the normal is parallel to...

    Text Solution

    |

  15. Maximum area of a reactangle which can be inscribed in a circle of a...

    Text Solution

    |

  16. If the function f(x)=2x^3-9a x^2+12 x^2x+1,w h e r ea >0, attains its ...

    Text Solution

    |

  17. If f(x)= kx-sin x is monotonically increasing then

    Text Solution

    |

  18. If a particle moves such that the displacement is proportional to the ...

    Text Solution

    |

  19. f(x)=tan^(-1)(sinx+cosx), x gt0 is always and increasing function on t...

    Text Solution

    |

  20. A ladder 10 m long rests against a vertical wall with the lower end on...

    Text Solution

    |