Home
Class 12
MATHS
f(x)=tan^(-1)(sinx+cosx), x gt0 is alway...

`f(x)=tan^(-1)(sinx+cosx), x gt0` is always and increasing function on the interval

A

`(0,pi)`

B

`(0,(pi)/2)`

C

`(0,(pi)/4)`

D

`(0,(3pi)/4)`

Text Solution

Verified by Experts

The correct Answer is:
C

Given `f(x)=tan^(-1)(sinx+cosx)`
`f'(x)=1/(1+(sinx+cosx)^(2))(cosx-sinx)`
`=1/(1+1+2sinxcosx)(cosx-sinx)`
For function to be increasing `f'(x)gt0`
`impliescosx-sinxgt0impliestanxlt1`
`:.` Required interval `=(0,(pi)/4)`
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF DERIVATIVES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MISCELLANEOUS PROBLEMS|80 Videos
  • APPLICATIONS OF DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|6 Videos
  • BINOMIAL DISTRIBUTION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|6 Videos

Similar Questions

Explore conceptually related problems

Show that f(x)=tan^(-1)(sin x+cos x) is an increasing function on the interval (0,pi/4)

Show that the function fgivenbyf(x)=tan^(-1)(sin x+cos x)x>0 is always an strictly increasing function in (0,(pi)/(4))

The function f(x)=tan^(-1)(sinx+cosx) is an increasing function in

f(x)=tan^(-1)(sinx+cosx),"then "f(x) is increasing in

f(x) = e^(sinx+cosx) is an increasing function in

The function f(x)=x+(1)/(x)(x!=0) is a non- increasing function in the interval

Prove the following f(x)=tan^(-1)(sinx+cosx) is strictly decreasing function on ((pi)/(4),(pi)/(2)) .

The function f(x)=cos((pi)/(x)),(x!=0) is increasing in the interval

If f(x) = x^(2) e^(-x^(2)/a^(2) is an increasing function then (for a gt 0) , x lies in the interval

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-APPLICATIONS OF DERIVATIVES-MHT CET CORNER
  1. The approximate value of f(x)=x^(3)+5x^(2)-7x+9 at x=1.1 is

    Text Solution

    |

  2. एक कण वक्र 6y= x^3+ 2 के अनुगत गति कर रहा है वक्र पर उन बिंदुओं को ज...

    Text Solution

    |

  3. All points on the curve y^(2)=4a(x+a" sin"(x)/(a)) at which the tangen...

    Text Solution

    |

  4. The length of normal at any point to the curve, y=c cosh(x/c) is

    Text Solution

    |

  5. The height of right circular cylinder of maximum volume in a sphere of...

    Text Solution

    |

  6. x,के सभी वास्तविक मानों के लिए (1-x+x^2)/(1+x+x^2) का न्यूनतम मान है ...

    Text Solution

    |

  7. If x+y=k is normal to y^2=12 x , then k is 3 (b) 9 (c) -9 (d) -3

    Text Solution

    |

  8. A particle moves along a straight line according to the law s=16-2t+3t...

    Text Solution

    |

  9. The equation of the tangent at (2,3) on the curve y^2=a x^3+b is y=4x-...

    Text Solution

    |

  10. The equation of motion of a particle moving along a straight line is s...

    Text Solution

    |

  11. The equation of the tangent to the curve y=4xe^(x) at (-1,(-4)/e) is

    Text Solution

    |

  12. The abscissa of the points, where the tangent to curve y=x^(3)-3x^(2)-...

    Text Solution

    |

  13. The point of the curve y^(2)=2(x-3) at which the normal is parallel to...

    Text Solution

    |

  14. Maximum area of a reactangle which can be inscribed in a circle of a...

    Text Solution

    |

  15. If the function f(x)=2x^3-9a x^2+12 x^2x+1,w h e r ea >0, attains its ...

    Text Solution

    |

  16. If f(x)= kx-sin x is monotonically increasing then

    Text Solution

    |

  17. If a particle moves such that the displacement is proportional to the ...

    Text Solution

    |

  18. f(x)=tan^(-1)(sinx+cosx), x gt0 is always and increasing function on t...

    Text Solution

    |

  19. A ladder 10 m long rests against a vertical wall with the lower end on...

    Text Solution

    |

  20. If x+y=8, then maximum valueof x^(2)y is

    Text Solution

    |