Home
Class 12
MATHS
if siny=xsin(a+y) and sec^2y(dy)/(dx)=(A...

if `siny=xsin(a+y) and sec^2y(dy)/(dx)=(A)/(1+x^(2)-2xcosa)` then the value of A is

A

2

B

cos a

C

sin a

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ \sin y = x \sin(a + y) \] ### Step 1: Expand the right-hand side using the sine addition formula Using the sine addition formula, we can expand \( \sin(a + y) \): \[ \sin(a + y) = \sin a \cos y + \cos a \sin y \] Substituting this into the equation gives: \[ \sin y = x (\sin a \cos y + \cos a \sin y) \] ### Step 2: Rearrange the equation Rearranging the equation, we have: \[ \sin y = x \sin a \cos y + x \cos a \sin y \] Now, we can move all terms involving \( \sin y \) to one side: \[ \sin y - x \cos a \sin y = x \sin a \cos y \] Factoring out \( \sin y \): \[ \sin y (1 - x \cos a) = x \sin a \cos y \] ### Step 3: Isolate \( \sin y \) Now, we can isolate \( \sin y \): \[ \sin y = \frac{x \sin a \cos y}{1 - x \cos a} \] ### Step 4: Find \( \tan y \) To find \( \tan y \), we can use the identity \( \tan y = \frac{\sin y}{\cos y} \): \[ \tan y = \frac{x \sin a}{1 - x \cos a} \] ### Step 5: Differentiate both sides with respect to \( x \) Now we differentiate both sides with respect to \( x \): Using the quotient rule on the right-hand side: \[ \frac{d}{dx}(\tan y) = \sec^2 y \frac{dy}{dx} \] Differentiating the right-hand side: \[ \frac{d}{dx}\left(\frac{x \sin a}{1 - x \cos a}\right) = \frac{(1 - x \cos a)(\sin a) - (x \sin a)(-\cos a)}{(1 - x \cos a)^2} \] This simplifies to: \[ \frac{\sin a (1 - x \cos a) + x \sin a \cos a}{(1 - x \cos a)^2} = \frac{\sin a}{(1 - x \cos a)^2} \] ### Step 6: Set the derivatives equal Now we equate the two derivatives: \[ \sec^2 y \frac{dy}{dx} = \frac{\sin a}{(1 - x \cos a)^2} \] ### Step 7: Solve for \( A \) From the original problem, we have: \[ \sec^2 y \frac{dy}{dx} = \frac{A}{1 + x^2 - 2x \cos a} \] Equating the two expressions gives: \[ \frac{\sin a}{(1 - x \cos a)^2} = \frac{A}{1 + x^2 - 2x \cos a} \] ### Step 8: Cross multiply and simplify Cross-multiplying results in: \[ A(1 - x \cos a)^2 = \sin a (1 + x^2 - 2x \cos a) \] ### Step 9: Expand both sides Expanding both sides: Left-hand side: \[ A(1 - 2x \cos a + x^2 \cos^2 a) \] Right-hand side: \[ \sin a + \sin a x^2 - 2 \sin a x \cos a \] ### Step 10: Compare coefficients To find \( A \), we can compare coefficients of \( x^2 \): From the left side, the coefficient of \( x^2 \) is \( A \cos^2 a \). From the right side, the coefficient of \( x^2 \) is \( \sin a \). Thus, we have: \[ A \cos^2 a = \sin a \] ### Step 11: Solve for \( A \) Finally, solving for \( A \): \[ A = \frac{\sin a}{\cos^2 a} = \tan a \sec a \] ### Conclusion The value of \( A \) is: \[ A = \tan a \sec a \]
Promotional Banner

Topper's Solved these Questions

  • MHTCET 2019 PAPER 2

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MATHEMATICS|50 Videos
  • MOCK TEST 2

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MCQS|50 Videos

Similar Questions

Explore conceptually related problems

If sin y=xsin (a+y) ,then (dy)/(dx)

(dy)/(dx)=(x+y+1)/(2x+2y+3)

x(dy)/(dx)-y=2x^(2)sec x

If y=x^(xsin x) , then find (dy)/(dx)

If y^(y) =xsin y,then (dy)/(dx)=

If y=e^((5)/(x))(2x^(2)-1)^((1)/(2)) then the value of ((dy)/(dx))/(y) is

(dy)/(dx)+xsin2y=x^(3)cos^(2)y

If y= 5^(e^(xsin x )), then (dy)/(dx) =

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-MOCK TEST 1-MCQS
  1. If the coordinates of the points A, B, C be (-1, 3, 2), (2, 3, 5) and...

    Text Solution

    |

  2. If the positive numbers a, b and c are the pth, qth and rth terms of G...

    Text Solution

    |

  3. The shortest distance between the lines (x-3)/3=(y-8)/(-1)=(z-3)/1a...

    Text Solution

    |

  4. If hata,hatb and hatc are three unit vectors inclined to each other at...

    Text Solution

    |

  5. The length of the perpendicular drawn from (1,2,3) to the line (x-6...

    Text Solution

    |

  6. if sinA-sqrt(6)cosA=sqrt(7)cosA, then cosA+sqrt(6)sinA is equal to

    Text Solution

    |

  7. L e t f(x)=(1-tanx)/(4x-pi),x!=pi/4,x in [0,pi/2], Iff(x)i s continuou...

    Text Solution

    |

  8. if siny=xsin(a+y) and sec^2y(dy)/(dx)=(A)/(1+x^(2)-2xcosa) then the va...

    Text Solution

    |

  9. Let f(x) be a differentiable function such that f'(x)=sinx+sin4xcosx...

    Text Solution

    |

  10. If xsintheta=ycostheta=(2ztantheta)/(1-tan^2theta), then 4z^2(x^2+y^2)...

    Text Solution

    |

  11. Assuming the petrol burnt (per hour) in driving a motor boat veries as...

    Text Solution

    |

  12. int(x e^(x))/((1+x)^(2)) dx is equal to

    Text Solution

    |

  13. intx^(-2//3)(1+x^(1//2))^(-5//3) dx is equal to

    Text Solution

    |

  14. The harmonic mean of two numbers is 4. Their arithmetic mean A and the...

    Text Solution

    |

  15. Form the differential equation of family of lines situated at a con...

    Text Solution

    |

  16. A curve y=f(x) passes through point P(1,1) . The normal to the curv...

    Text Solution

    |

  17. The solution of the differential equation x^2(dy)/(dx)cos1/x-ysin1/x=-...

    Text Solution

    |

  18. The probability distribution of the random variables X is given by {...

    Text Solution

    |

  19. If A=[(a,b),(c,d)] is such that |A|=0 and A^(2)-(a+d)A+kI=0,then k is...

    Text Solution

    |

  20. Let PQR be a right - angled isosceles triangle , right angled at P(2,1...

    Text Solution

    |