Home
Class 12
MATHS
int(pi//2)^(pi//2)(cosx)/(1+e^(x))dx is ...

`int_(pi//2)^(pi//2)(cosx)/(1+e^(x))dx` is equal to

A

1

B

0

C

`-1`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos x}{1 + e^x} \, dx, \] we can use a property of definite integrals. Specifically, we will use the substitution \( x = -t \). ### Step 1: Substitute \( x = -t \) When we make this substitution, the limits of integration change as follows: - When \( x = -\frac{\pi}{2} \), \( t = \frac{\pi}{2} \) - When \( x = \frac{\pi}{2} \), \( t = -\frac{\pi}{2} \) The differential \( dx \) becomes \( -dt \). Thus, we can rewrite the integral: \[ I = \int_{\frac{\pi}{2}}^{-\frac{\pi}{2}} \frac{\cos(-t)}{1 + e^{-t}} (-dt) = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos t}{1 + e^{-t}} \, dt. \] ### Step 2: Simplify the integral Using the fact that \( \cos(-t) = \cos(t) \), we can rewrite the integral as: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos t}{1 + \frac{1}{e^t}} \, dt = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos t \cdot e^t}{e^t + 1} \, dt. \] ### Step 3: Combine the two expressions for \( I \) Now we have two expressions for \( I \): 1. \( I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos x}{1 + e^x} \, dx \) 2. \( I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos x \cdot e^x}{e^x + 1} \, dx \) Adding these two equations gives: \[ 2I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left( \frac{\cos x}{1 + e^x} + \frac{\cos x \cdot e^x}{e^x + 1} \right) \, dx. \] ### Step 4: Simplify the integrand The integrand simplifies as follows: \[ \frac{\cos x}{1 + e^x} + \frac{\cos x \cdot e^x}{e^x + 1} = \cos x \left( \frac{1 + e^x}{1 + e^x} \right) = \cos x. \] Thus, we have: \[ 2I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos x \, dx. \] ### Step 5: Calculate the integral of \( \cos x \) The integral of \( \cos x \) from \( -\frac{\pi}{2} \) to \( \frac{\pi}{2} \) is: \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos x \, dx = [\sin x]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = \sin\left(\frac{\pi}{2}\right) - \sin\left(-\frac{\pi}{2}\right) = 1 - (-1) = 2. \] ### Step 6: Solve for \( I \) Now substituting back, we have: \[ 2I = 2 \implies I = 1. \] Thus, the value of the integral is: \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos x}{1 + e^x} \, dx = 1. \] ### Final Answer: \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos x}{1 + e^x} \, dx = 1. \]
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST 2

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MCQS|50 Videos
  • MOCK TEST 4

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MCQS|50 Videos

Similar Questions

Explore conceptually related problems

int_(-pi//2)^(pi//2)(1)/(e^(sinx)+1)dx is equal to

The value of int_(-pi)^(pi)(sqrt2cosx)/(1+e^(x))dx is equal to

The value of int_(-pi//2)^(pi//2)(x^(2)cosx)/(1+e^(x)) d x is equal to

int_(-pi/2)^(pi/2)cosx dx

The value of int_(-pi//2)^(pi//2)(1)/(e^(sinx)+1) dx is equal to

The value of int_(-(pi)/(2))^(pi/2)(x^(2)cosx)/(1+e^(x))dx is equal to

int_(-pi//2)^(pi//2)cosxln((1+x)/(1-x))dx is equal to

The value of int_(-pi//2)^(pi//2) (x^(2)cos x )/(1+e^(x)) dx is equal to

int _(-pi//2)^(pi//2) (dx)/(1+cosx) is equal to

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-MOCK TEST 3-MCQS
  1. if sqrt(x^2+y^2)=ae^(tan^-1 (y/x)) , a > 0, (y(0) > 0) then y"(0) equa...

    Text Solution

    |

  2. int (cos2theta) . log((costheta+sintheta)/(costheta-sintheta...

    Text Solution

    |

  3. int(pi//2)^(pi//2)(cosx)/(1+e^(x))dx is equal to

    Text Solution

    |

  4. Two of the straight lines given by 3x^(3)+3x^(2)y-3xy^(2)+dy^(3)=0 are...

    Text Solution

    |

  5. 18. The straight lines joining the origin to the points of intersectio...

    Text Solution

    |

  6. The lines (x+1)/(1)=(y-1)/(2)=(z-2)/(1),(x-1)/(2)=(y)/(1)=(z+1)/(4) ar...

    Text Solution

    |

  7. The slope of the tangent to a curve y=f(x) at (x,f(x)) is 2x+1. If the...

    Text Solution

    |

  8. The solution of the differential equation {y(1+x^(-1))+siny}dx+(x+ln x...

    Text Solution

    |

  9. if p implies(q ^^ r) is false, then the truth values of p, q and r ar...

    Text Solution

    |

  10. Find the value of expression 1 / (cos 290^@) + 1 / (sqrt3 sin 250^@)

    Text Solution

    |

  11. If In is the identity matrix of order n then (In)^(-1)=

    Text Solution

    |

  12. The value of tan^(2)(sec^(-1)2)+cot^(2)(cosec^(-1)3) is

    Text Solution

    |

  13. If in Delta ABC, tan.(A)/(2) = (5)/(6) = (2)/(5), then prove that a, b...

    Text Solution

    |

  14. If one of the lines of the pair ax^(2)+2hxy+by^(2)=0 bisects the angle...

    Text Solution

    |

  15. The values of theta in (0,(pi)/(2)) satisfying

    Text Solution

    |

  16. If A,B,C,D are (2,3,-1),(3,5,-3),(1,2,3),(3,5,7) respectively, then th...

    Text Solution

    |

  17. If sinA+cosB=a and sinB+cosA=b then sin(A+B)=

    Text Solution

    |

  18. The value of f(0), so that the function f(x)=(sqrt(a^2-a x+x^2)-sqrt(...

    Text Solution

    |

  19. In a class, there are 10 boys and 8 girls. When 3 students are selecte...

    Text Solution

    |

  20. The value of f(0), so that the function f(x)=(1-cos(1-cosx))/(x^(4...

    Text Solution

    |