Home
Class 12
MATHS
The inverse of the matrix [(1,0,0),(3,3,...

The inverse of the matrix `[(1,0,0),(3,3,0),(5,2,-1)]` is

A

`-(1)/(3)[(-3,0,0),(3,1,0),(9,2,-3)]`

B

`-(1)/(3)[(-3,0,0),(3,-1,0),(-9,-2,3)]`

C

`-(1)/(3)[(3,0,0),(3,-1,0),(-9,-2,3)]`

D

`-(1)/(3)[(-3,0,0),(-3,-1,0),(-9,-2,3)]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A = \begin{pmatrix} 1 & 0 & 0 \\ 3 & 3 & 0 \\ 5 & 2 & -1 \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate the Determinant of Matrix A The determinant of a 3x3 matrix \( A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \) is calculated using the formula: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix \( A \): - \( a = 1, b = 0, c = 0 \) - \( d = 3, e = 3, f = 0 \) - \( g = 5, h = 2, i = -1 \) Calculating the determinant: \[ \text{det}(A) = 1 \cdot (3 \cdot (-1) - 0 \cdot 2) - 0 \cdot (3 \cdot (-1) - 0 \cdot 5) + 0 \cdot (3 \cdot 2 - 3 \cdot 5) \] \[ = 1 \cdot (-3) - 0 + 0 = -3 \] ### Step 2: Calculate the Adjoint of Matrix A The adjoint of a matrix is found by calculating the cofactor matrix and then taking its transpose. #### Step 2.1: Calculate the Cofactor Matrix The cofactor \( C_{ij} \) of an element \( a_{ij} \) is given by: \[ C_{ij} = (-1)^{i+j} \cdot M_{ij} \] where \( M_{ij} \) is the determinant of the matrix obtained by deleting the \( i \)-th row and \( j \)-th column. - **Cofactor \( C_{11} \)**: \[ M_{11} = \begin{vmatrix} 3 & 0 \\ 2 & -1 \end{vmatrix} = 3 \cdot (-1) - 0 \cdot 2 = -3 \quad \Rightarrow \quad C_{11} = -3 \] - **Cofactor \( C_{12} \)**: \[ M_{12} = \begin{vmatrix} 3 & 0 \\ 5 & -1 \end{vmatrix} = 3 \cdot (-1) - 0 \cdot 5 = -3 \quad \Rightarrow \quad C_{12} = 3 \] - **Cofactor \( C_{13} \)**: \[ M_{13} = \begin{vmatrix} 3 & 3 \\ 5 & 2 \end{vmatrix} = 3 \cdot 2 - 3 \cdot 5 = 6 - 15 = -9 \quad \Rightarrow \quad C_{13} = -9 \] - **Cofactor \( C_{21} \)**: \[ M_{21} = \begin{vmatrix} 0 & 0 \\ 2 & -1 \end{vmatrix} = 0 \cdot (-1) - 0 \cdot 2 = 0 \quad \Rightarrow \quad C_{21} = 0 \] - **Cofactor \( C_{22} \)**: \[ M_{22} = \begin{vmatrix} 1 & 0 \\ 5 & -1 \end{vmatrix} = 1 \cdot (-1) - 0 \cdot 5 = -1 \quad \Rightarrow \quad C_{22} = -1 \] - **Cofactor \( C_{23} \)**: \[ M_{23} = \begin{vmatrix} 1 & 0 \\ 5 & 2 \end{vmatrix} = 1 \cdot 2 - 0 \cdot 5 = 2 \quad \Rightarrow \quad C_{23} = -2 \] - **Cofactor \( C_{31} \)**: \[ M_{31} = \begin{vmatrix} 0 & 0 \\ 3 & 0 \end{vmatrix} = 0 \quad \Rightarrow \quad C_{31} = 0 \] - **Cofactor \( C_{32} \)**: \[ M_{32} = \begin{vmatrix} 1 & 0 \\ 3 & 0 \end{vmatrix} = 0 \quad \Rightarrow \quad C_{32} = 0 \] - **Cofactor \( C_{33} \)**: \[ M_{33} = \begin{vmatrix} 1 & 0 \\ 3 & 3 \end{vmatrix} = 1 \cdot 3 - 0 \cdot 3 = 3 \quad \Rightarrow \quad C_{33} = 3 \] Now, the cofactor matrix is: \[ \text{Cofactor Matrix} = \begin{pmatrix} -3 & 3 & -9 \\ 0 & -1 & -2 \\ 0 & 0 & 3 \end{pmatrix} \] #### Step 2.2: Transpose the Cofactor Matrix to Get the Adjoint \[ \text{Adjoint}(A) = \begin{pmatrix} -3 & 0 & 0 \\ 3 & -1 & 0 \\ -9 & -2 & 3 \end{pmatrix} \] ### Step 3: Calculate the Inverse of Matrix A The inverse of matrix \( A \) is given by: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{Adjoint}(A) \] Substituting the values: \[ A^{-1} = \frac{1}{-3} \cdot \begin{pmatrix} -3 & 0 & 0 \\ 3 & -1 & 0 \\ -9 & -2 & 3 \end{pmatrix} \] \[ = \begin{pmatrix} 1 & 0 & 0 \\ -1 & \frac{1}{3} & 0 \\ 3 & \frac{2}{3} & -1 \end{pmatrix} \] ### Final Answer Thus, the inverse of the matrix \( A \) is: \[ A^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ -1 & \frac{1}{3} & 0 \\ 3 & \frac{2}{3} & -1 \end{pmatrix} \]

To find the inverse of the matrix \( A = \begin{pmatrix} 1 & 0 & 0 \\ 3 & 3 & 0 \\ 5 & 2 & -1 \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate the Determinant of Matrix A The determinant of a 3x3 matrix \( A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \) is calculated using the formula: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) ...
Promotional Banner

Topper's Solved these Questions

  • SETS, RELATIONS AND FUNCTIONS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise Exercise 2 (MISCELLANEOUS PROBLEMS)|30 Videos
  • SOLVED PAPER 2018

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MCQS|50 Videos

Similar Questions

Explore conceptually related problems

The elements in the first row and third column of the inverse of the matrix [(1,2,3),(0,1,2),(0,0,1)] is

The element in the first row and third column of the inverse of the matrix [(1,2,-3),(0,1,2),(0,0,1)] is

The inverse of the matrix [(1,1,1),(1,0,2),(3,1,1)] is

The element in the first row and third column of the inverse of the matrix {:[(1,2,-3),(0,1,2),(0,0,1)]:} , is

Find the inverse of the matrix [(1,2,3),(0,1,4),(5,6,0)]

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-SOLVED PAPER 2017-MCQS
  1. The statement pattern (~p ^^ q) is logically equivalent to

    Text Solution

    |

  2. If g(x) is the inverse function of f(x) and f'(x)=(1)/(1+x^(4)), then ...

    Text Solution

    |

  3. The inverse of the matrix [(1,0,0),(3,3,0),(5,2,-1)] is

    Text Solution

    |

  4. If int(1)/(sqrt(9-16x^(2)))dx=alphasin^(-1)(betax)+c, then alpha+(1)/(...

    Text Solution

    |

  5. O(0,0), A(1,2), B(3,4) are the vertices of DeltaOAB. The joint equatio...

    Text Solution

    |

  6. f(x)=[tan(pi/4+x)]^(1/x), x!=0 and f(x)=k, x=0 is continuous at x=0 th...

    Text Solution

    |

  7. For a invertible matrix A if A(adjA)=[(10,0),(0,10)], then |A|=

    Text Solution

    |

  8. The solution of the differential equation (dy)/(dx)="tan"((y)/(x))+(y)...

    Text Solution

    |

  9. In DeltaABC, if sin^(2)A+sin^(2)B=sin^(2)C and l(AB)=10, then the maxi...

    Text Solution

    |

  10. If x=f(t) and y=g(t), then (d^2y)/(dx^2) is equal to

    Text Solution

    |

  11. The equation of line equally inclined to coordinate axes and passing t...

    Text Solution

    |

  12. If int(0)^((pi)/(2))logcosxdx=(pi)/(2)log((1)/(2)), then int(0)^((pi)/...

    Text Solution

    |

  13. A boy tosses faiir coin 3 times. If he gets Rs 2X for X heads, then hi...

    Text Solution

    |

  14. Which of the following statement pattern is a tautology?

    Text Solution

    |

  15. If the angle between the planes r.(mhati-hatj+2hatk)+3=0 and r*(2hati-...

    Text Solution

    |

  16. If the origin and the points P(2,3,4), Q(1,2,3) and R(x,y,z) are copla...

    Text Solution

    |

  17. if lines represented by equation px^(2)-qy^(2)=0 are distinct, then

    Text Solution

    |

  18. Let square PQRS be a quadrilateral. If M and N are the mid-points of t...

    Text Solution

    |

  19. If slopes of lines represented by kx^(2)+5xy+y^(2)=0 differ by 1, then...

    Text Solution

    |

  20. If vector r wiith dc's l,m,n is equally inclined to the coordinate axe...

    Text Solution

    |