Home
Class 12
MATHS
If int(1)/((x^(2)+4)(x^(2)+9))dx=A" tan"...

If `int(1)/((x^(2)+4)(x^(2)+9))dx=A" tan"^(-1)(x)/(2)+Btan^(-1)((x)/(3))+C`, then A-B=

A

`(1)/(6)`

B

`(1)/(30)`

C

`-(1)/(30)`

D

`-(1)/(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of constants \( A \) and \( B \) from the given integral and then compute \( A - B \). ### Step 1: Set up the integral We start with the integral: \[ \int \frac{1}{(x^2 + 4)(x^2 + 9)} \, dx = A \tan^{-1}\left(\frac{x}{2}\right) + B \tan^{-1}\left(\frac{x}{3}\right) + C \] ### Step 2: Differentiate both sides Next, we differentiate both sides with respect to \( x \): \[ \frac{d}{dx} \left( \int \frac{1}{(x^2 + 4)(x^2 + 9)} \, dx \right) = \frac{1}{(x^2 + 4)(x^2 + 9)} \] Using the chain rule on the right side, we have: \[ \frac{d}{dx} \left( A \tan^{-1}\left(\frac{x}{2}\right) + B \tan^{-1}\left(\frac{x}{3}\right) + C \right) = A \cdot \frac{1}{1 + \left(\frac{x}{2}\right)^2} \cdot \frac{1}{2} + B \cdot \frac{1}{1 + \left(\frac{x}{3}\right)^2} \cdot \frac{1}{3} \] ### Step 3: Simplify the derivatives This simplifies to: \[ \frac{A}{2} \cdot \frac{1}{1 + \frac{x^2}{4}} + \frac{B}{3} \cdot \frac{1}{1 + \frac{x^2}{9}} \] which can be rewritten as: \[ \frac{A}{2} \cdot \frac{4}{4 + x^2} + \frac{B}{3} \cdot \frac{9}{9 + x^2} \] ### Step 4: Combine the fractions To combine these fractions, we need a common denominator: \[ \frac{2A \cdot 4 + 3B \cdot 9}{6(4 + x^2)(9 + x^2)} \] Setting this equal to the left side: \[ \frac{1}{(x^2 + 4)(x^2 + 9)} \] ### Step 5: Equate coefficients Now, we equate the numerators: \[ 2A \cdot 4 + 3B \cdot 9 = 6 \] ### Step 6: Set up the system of equations From the previous steps, we also have: 1. \( 2A + 3B = 0 \) (from the coefficients of \( x^2 \)) 2. \( 8A + 27B = 6 \) (from the constant term) ### Step 7: Solve the system of equations From the first equation, we can express \( A \) in terms of \( B \): \[ A = -\frac{3B}{2} \] Substituting this into the second equation: \[ 8\left(-\frac{3B}{2}\right) + 27B = 6 \] This simplifies to: \[ -12B + 27B = 6 \implies 15B = 6 \implies B = \frac{2}{5} \] Now substituting \( B \) back to find \( A \): \[ A = -\frac{3 \cdot \frac{2}{5}}{2} = -\frac{3}{5} \] ### Step 8: Calculate \( A - B \) Now we compute \( A - B \): \[ A - B = -\frac{3}{5} - \frac{2}{5} = -\frac{5}{5} = -1 \] ### Final Answer Thus, the value of \( A - B \) is: \[ \boxed{-1} \]

To solve the problem, we need to find the values of constants \( A \) and \( B \) from the given integral and then compute \( A - B \). ### Step 1: Set up the integral We start with the integral: \[ \int \frac{1}{(x^2 + 4)(x^2 + 9)} \, dx = A \tan^{-1}\left(\frac{x}{2}\right) + B \tan^{-1}\left(\frac{x}{3}\right) + C \] ...
Promotional Banner

Topper's Solved these Questions

  • SETS, RELATIONS AND FUNCTIONS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise Exercise 2 (MISCELLANEOUS PROBLEMS)|30 Videos
  • SOLVED PAPER 2018

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MCQS|50 Videos

Similar Questions

Explore conceptually related problems

If int (dx)/((x^2+4)(x^2+9))=Atan^(-1)((x)/(2))+Btan^(-1)((x)/(3))+c , then A-B =

int(1)/(x^(4)+3x^(2)+9)dx

If int(1)/((x^(2)+1)(x^(2)+4))dx=Atan^(-1)x+B" tan"^(-1)(x)/(2)+C , then

" 1.If "int(1)/((x^(2)+1)(x^(2)+4))dx=G tan^(-1)x+H tan^(-1)((x)/(2))+C,C in A." Then "G=.......,H=...?

int_(1)^(2)(3x)/(9x^(2)-1)dx

prove that int(x^(2))/((x^(2)+1)(x^(2)+4))dx=-(1)/(3)tan^(-1)x+(2)/(3)tan^(-1)((x)/(2))+

int(dx)/(x^(2)+2x+2) equals (A) x tan^(-1)(x+1)+C (B) tan^(-1)(x+1)+C

int(2x^(2)+3)/((x^(2)-1)(x^(2)+4))dx=alog((x+1)/(x-1))+b"tan"^(-1)(x)/(2) , then (a,b) is

If int(1)/((sinx+4)(sinx-1))dx =A(1)/("tan"(x)/(2)-1)+B"tan"^(-1){f(x)}+C . Then,

If int(1)/(a^(4)-x^(4))dx=A tan^(-1)((x)/(a))+B log|(a+x)/(a-x)|+C ,then (A,B)=

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-SOLVED PAPER 2017-MCQS
  1. If slopes of lines represented by kx^(2)+5xy+y^(2)=0 differ by 1, then...

    Text Solution

    |

  2. If vector r wiith dc's l,m,n is equally inclined to the coordinate axe...

    Text Solution

    |

  3. If int(1)/((x^(2)+4)(x^(2)+9))dx=A" tan"^(-1)(x)/(2)+Btan^(-1)((x)/(3)...

    Text Solution

    |

  4. If alpha and beta are roots of the equation x^(2)+5|x|-6=0, then the v...

    Text Solution

    |

  5. If x=a(t-(1)/(t)),y=a(t+(1)/(t)), where t be the parameter, then (dy)/...

    Text Solution

    |

  6. The point on the curve y=sqrt(x-1), where the tangent is perpendicular...

    Text Solution

    |

  7. If intsqrt((x-5)/(x-7))dx=Asqrt(x^(2)-12x+35) +log|x-6+sqrt(x^(2)-12...

    Text Solution

    |

  8. At random variable X~B(n,p) if values of mean and variance of X are 18...

    Text Solution

    |

  9. The area of the region bounded by the lines y=2x+1y=3x+1 and x=4 is

    Text Solution

    |

  10. A box contains 6 pens, 2 of which are defective, two pens are taken ra...

    Text Solution

    |

  11. If the volume of spherical ball is increasing at the rate of 4pi" cc/s...

    Text Solution

    |

  12. If f(x)=log(sec^(2)x)^(cot^2x) for xne0 and k for x=0 is continuous ...

    Text Solution

    |

  13. If c denotes the contradication, then dual of the compound statement ~...

    Text Solution

    |

  14. Form the differential equation of the family of all the parabolas whos...

    Text Solution

    |

  15. int(0)^(3)[x]dx=. . . ., where [x] is greatest integer funcction.

    Text Solution

    |

  16. The objective function off LPP defined over the convex set attains it ...

    Text Solution

    |

  17. If the inverse of the matriix [(alpha,14,-1),(2,3,1),(6,2,3)] does not...

    Text Solution

    |

  18. If f(x)=x for x le 0=0 for x t 0, the f(x) at x=0 is

    Text Solution

    |

  19. The equation of the plane through (-1,1,2), whose normal makes equal a...

    Text Solution

    |

  20. Probability that a person will develop immunity after vaccinations is ...

    Text Solution

    |