Home
Class 12
MATHS
int(1)/((x^(2)+1)^(2))dx=...

`int(1)/((x^(2)+1)^(2))dx=`

A

`tan^(-1)x(1)/(2x(x^(2)+1))+c`

B

`(1)/(2)tan^(-1)x+(x)/(2(x^(2)+1))+c`

C

`tan^(-1)x+(1)/(x^(2)+1)+c`

D

`tan^(-1)x+(1)/(2x^(2)+1)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{(x^2 + 1)^2} \, dx \), we will use the substitution method. Let's go through the steps: ### Step 1: Substitution Let \( x = \tan \theta \). Then, we know that: \[ dx = \sec^2 \theta \, d\theta \] Also, recall that: \[ x^2 + 1 = \tan^2 \theta + 1 = \sec^2 \theta \] ### Step 2: Rewrite the Integral Substituting \( x \) and \( dx \) into the integral, we have: \[ \int \frac{1}{(x^2 + 1)^2} \, dx = \int \frac{1}{(\sec^2 \theta)^2} \sec^2 \theta \, d\theta \] This simplifies to: \[ \int \frac{\sec^2 \theta}{\sec^4 \theta} \, d\theta = \int \cos^2 \theta \, d\theta \] ### Step 3: Use the Identity for Cosine Using the identity \( \cos^2 \theta = \frac{1 + \cos(2\theta)}{2} \), we can rewrite the integral: \[ \int \cos^2 \theta \, d\theta = \int \frac{1 + \cos(2\theta)}{2} \, d\theta \] This can be separated into two integrals: \[ = \frac{1}{2} \int 1 \, d\theta + \frac{1}{2} \int \cos(2\theta) \, d\theta \] ### Step 4: Integrate Now we can integrate each part: \[ \frac{1}{2} \int 1 \, d\theta = \frac{\theta}{2} \] \[ \frac{1}{2} \int \cos(2\theta) \, d\theta = \frac{1}{2} \cdot \frac{\sin(2\theta)}{2} = \frac{\sin(2\theta)}{4} \] Putting it all together, we have: \[ \int \cos^2 \theta \, d\theta = \frac{\theta}{2} + \frac{\sin(2\theta)}{4} + C \] ### Step 5: Back Substitute Now we need to substitute back in terms of \( x \). Recall that \( \theta = \tan^{-1}(x) \), so: \[ \sin(2\theta) = 2\sin(\theta)\cos(\theta) \] From the right triangle formed by \( \tan \theta = \frac{x}{1} \): - Opposite side (p) = \( x \) - Adjacent side (b) = \( 1 \) - Hypotenuse (h) = \( \sqrt{x^2 + 1} \) Thus: \[ \sin(\theta) = \frac{x}{\sqrt{x^2 + 1}}, \quad \cos(\theta) = \frac{1}{\sqrt{x^2 + 1}} \] Therefore: \[ \sin(2\theta) = 2 \cdot \frac{x}{\sqrt{x^2 + 1}} \cdot \frac{1}{\sqrt{x^2 + 1}} = \frac{2x}{x^2 + 1} \] ### Final Result Substituting back, we get: \[ \int \frac{1}{(x^2 + 1)^2} \, dx = \frac{1}{2} \tan^{-1}(x) + \frac{1}{4} \cdot \frac{2x}{x^2 + 1} + C \] This simplifies to: \[ \int \frac{1}{(x^2 + 1)^2} \, dx = \frac{1}{2} \tan^{-1}(x) + \frac{x}{2(x^2 + 1)} + C \]

To solve the integral \( \int \frac{1}{(x^2 + 1)^2} \, dx \), we will use the substitution method. Let's go through the steps: ### Step 1: Substitution Let \( x = \tan \theta \). Then, we know that: \[ dx = \sec^2 \theta \, d\theta \] Also, recall that: ...
Promotional Banner

Topper's Solved these Questions

  • SOLVED PAPER 2018

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MCQS|50 Videos
  • STRAIGHT LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2(MISCELLANEOUS PROBLEMS)|30 Videos

Similar Questions

Explore conceptually related problems

int1/((x^(2)+1)^(2)) dx=…

int(x)/((1-x^(2))^(1/2))dx

int(1)/((x-2)(1+x^(2)))dx=

Evaluate: int(1)/((x^(2)+1)(x^(2)+4))dx

int(1)/(1+(2x+1)^(2))dx

int(x^(2)+1)/((x^(2)-1)^(2))dx

int (x-1)^2/((x^2+1)^2)dx=

int(1)/((x+1)^2(x^2+1))dx=

int(1)/((x+2)^(2)+1)dx

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-SOLVED PAPER 2019-MCQS
  1. If A is a non-singular matrix such that (A-2I)(A-4I)=0 , then (A+8A^(...

    Text Solution

    |

  2. If G(3,-5,r) is centroid of triangle ABC where A(7,-8,1), B(p,q,5) and...

    Text Solution

    |

  3. int(1)/((x^(2)+1)^(2))dx=

    Text Solution

    |

  4. If theta=(17pi)/(3) then, tan theta- cot theta = . . .

    Text Solution

    |

  5. Derivative of log(e^(2))(logx) with respect to x is . . .

    Text Solution

    |

  6. In DeltaABC, with usual notations, if cosA=(sinB)/(sinC), then the tri...

    Text Solution

    |

  7. In a GP if the (m+n)th term is p and (m-n)th term is q then mth term i...

    Text Solution

    |

  8. A random variable X has following probability distribution {:(X=x,1,...

    Text Solution

    |

  9. The area bounded by the coordinate axes and normal to the curve y=log(...

    Text Solution

    |

  10. The value of x in (0,(pi)/(2)) satisfying the equation sin x cos x = (...

    Text Solution

    |

  11. If a+b, b+c and c+a are coterminous edges of a parallel opiped then it...

    Text Solution

    |

  12. If the c.d.f (cumulative distribution function) is given by F(x)=(x-25...

    Text Solution

    |

  13. The joint equation of pair of straight lines passing through origin an...

    Text Solution

    |

  14. The angle between lines (x-2)/(2)=(y-3)/(-2)=(z-5)/(1) and (x-2)/(1)=(...

    Text Solution

    |

  15. If the line passes through the point P(6,-1,2), Q(8,-7,2lamda) and R(5...

    Text Solution

    |

  16. The equivalent for of the statement ~(p to ~ q) is

    Text Solution

    |

  17. If A=(x in R:x^(2)-5|x|+6=0}, then n(A)= . . .

    Text Solution

    |

  18. If the function f(x)=(log(1+ax)-log(1-bx))/(x), x ne 0 is continuous a...

    Text Solution

    |

  19. The co-ordinates of the foot of perpendicular drawn from origin to the...

    Text Solution

    |

  20. int(sqrt(x^2-a^2))/x dx

    Text Solution

    |