Home
Class 12
MATHS
If int(0)^(a)sqrt((a-x)/(x))dx=(K)/(2), ...

If `int_(0)^(a)sqrt((a-x)/(x))dx=(K)/(2),` then K=. . .

A

`(pia)/(2)`

B

`(5pia)/(2)`

C

`(3pia)/(2)`

D

`pia`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral equation given in the problem, we start with the expression: \[ \int_{0}^{a} \sqrt{\frac{a-x}{x}} \, dx = \frac{K}{2} \] ### Step 1: Substitution We will use the substitution \( x = a \sin^2 \theta \). This implies that: \[ dx = 2a \sin \theta \cos \theta \, d\theta \] ### Step 2: Change of Limits When \( x = 0 \), \( \sin^2 \theta = 0 \) which gives \( \theta = 0 \). When \( x = a \), \( \sin^2 \theta = 1 \) which gives \( \theta = \frac{\pi}{2} \). ### Step 3: Substitute in the Integral Now substituting \( x \) and \( dx \) into the integral: \[ \int_{0}^{\frac{\pi}{2}} \sqrt{\frac{a - a \sin^2 \theta}{a \sin^2 \theta}} \cdot 2a \sin \theta \cos \theta \, d\theta \] This simplifies to: \[ \int_{0}^{\frac{\pi}{2}} \sqrt{\frac{a(1 - \sin^2 \theta)}{a \sin^2 \theta}} \cdot 2a \sin \theta \cos \theta \, d\theta \] ### Step 4: Simplify the Square Root Since \( 1 - \sin^2 \theta = \cos^2 \theta \), we can rewrite the integral as: \[ \int_{0}^{\frac{\pi}{2}} \sqrt{\frac{a \cos^2 \theta}{a \sin^2 \theta}} \cdot 2a \sin \theta \cos \theta \, d\theta \] This simplifies to: \[ \int_{0}^{\frac{\pi}{2}} \frac{\cos \theta}{\sin \theta} \cdot 2a \sin \theta \cos \theta \, d\theta = 2a \int_{0}^{\frac{\pi}{2}} \cos^2 \theta \, d\theta \] ### Step 5: Evaluate the Integral Using the identity \( \cos^2 \theta = \frac{1 + \cos 2\theta}{2} \): \[ 2a \int_{0}^{\frac{\pi}{2}} \frac{1 + \cos 2\theta}{2} \, d\theta = a \int_{0}^{\frac{\pi}{2}} (1 + \cos 2\theta) \, d\theta \] This evaluates to: \[ a \left[ \theta + \frac{\sin 2\theta}{2} \right]_{0}^{\frac{\pi}{2}} = a \left[ \frac{\pi}{2} + 0 \right] = \frac{a\pi}{2} \] ### Step 6: Set Equal to Given Expression Now we have: \[ \frac{a\pi}{2} = \frac{K}{2} \] ### Step 7: Solve for K Multiplying both sides by 2 gives: \[ K = a\pi \] ### Conclusion Thus, the value of \( K \) is: \[ \boxed{a\pi} \]

To solve the integral equation given in the problem, we start with the expression: \[ \int_{0}^{a} \sqrt{\frac{a-x}{x}} \, dx = \frac{K}{2} \] ### Step 1: Substitution We will use the substitution \( x = a \sin^2 \theta \). This implies that: ...
Promotional Banner

Topper's Solved these Questions

  • SOLVED PAPER 2018

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MCQS|50 Videos
  • STRAIGHT LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2(MISCELLANEOUS PROBLEMS)|30 Videos

Similar Questions

Explore conceptually related problems

int(k^(sqrt(x)))/(sqrt(x))dx

int_(0)^(2)(3^(sqrt(x)))/(sqrt(x))dx

If int_(0)^(1) (dx)/(sqrt(1+x)-sqrtx)= (k)/(3) then k= ….

If int_(0)^(K)(cos(x)dx)/(1+sin^(2)(x))=(pi)/(4) then K=

If int_(0)^(k)(dx)/(2+18x^(2))=(pi)/(24) , then the value of k is

If int_(0) ^(k) (dx)/(2+18 x^(2))=(pi)/(24), then the value of k is

int_(0)^(a)(sqrt(x))/((sqrt(x)+sqrt(a-x)))dx=(a)/(2)

If int_(0)^(oo)(dx)/(e^(x)+e^(-x))=(pi)/(k) then k is equal to

If int_0^(1/2)(x^2)/(1-x^2)^(3/2)dx=k/6 , then k=

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-SOLVED PAPER 2019-MCQS
  1. Evaluate : int0^1x(1-x)^5dx

    Text Solution

    |

  2. If 4sin^(-1)x+6cos^(-1)x=3pi then x= . . .

    Text Solution

    |

  3. If int(0)^(a)sqrt((a-x)/(x))dx=(K)/(2), then K=. . .

    Text Solution

    |

  4. In DeltaABC, with usual notations, (bsinB-c sin C)/(sin(B-C))=. . . .

    Text Solution

    |

  5. The solution of the differential equation (d theta)/(dt)=-k(theta-thet...

    Text Solution

    |

  6. The vector equation of the plane r=(2hati+hatk)+lamda(hati)+mu(hati+2h...

    Text Solution

    |

  7. Area of the region bounded by y=cosx,x=0,x=pi and X-axis is . . .sq....

    Text Solution

    |

  8. The length of the latusrectum of an ellipse is (18)/(5) and eccentrici...

    Text Solution

    |

  9. Let a:~(p ^^ ~r) vv (~ q vv s ) and b:(p vv s ) lar (q ^^ r). If the t...

    Text Solution

    |

  10. "If two triangles are congruent, then their areas are equal" is the gi...

    Text Solution

    |

  11. int log x*[log(ex)]^(-2)dx= . . .

    Text Solution

    |

  12. y=log[(x+sqrt(x^2+25))/(sqrt(x^2+25)-x)],f i n d(dy)/(dx)

    Text Solution

    |

  13. If the scalar triple product of the vectors -3hati+7hatj-3hatk,3hati-7...

    Text Solution

    |

  14. The edge of a cube is decreasingg at the rate of 0.04 cm/sec. if the e...

    Text Solution

    |

  15. The joint equation of lines passing through origin and having slopes (...

    Text Solution

    |

  16. If r is the radius of spherical balloon at time t and the surface area...

    Text Solution

    |

  17. int(0)^((pi)/(2))sqrt(costheta)*sin^(3)theta d theta= . . .

    Text Solution

    |

  18. If omega is a complex cube root of unit and A=[(omega,0,0),(0,omega^...

    Text Solution

    |

  19. If A and B are squuare matrices of order 3 such that |A|=2,|B|=4,, the...

    Text Solution

    |

  20. If int(1)/(1-cot x)dx=Ax+Blog|sinx-cosx|+c then A+B= . . .

    Text Solution

    |