Home
Class 12
MATHS
If f(x)=[tan((pi)/(4)+x)]^((1)/(x)),xne0...

If `f(x)=[tan((pi)/(4)+x)]^((1)/(x)),xne0" " f(x)=k , "x=0`, `" is continuous at x=0 "` Then k= . . . .

A

`e^(2)`

B

1

C

`e`

D

`e^(-2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( k \) such that the function \( f(x) = \left[ \tan\left(\frac{\pi}{4} + x\right) \right]^{\frac{1}{x}} \) is continuous at \( x = 0 \), we need to ensure that: \[ \lim_{x \to 0} f(x) = f(0) = k \] ### Step 1: Calculate \( f(x) \) for \( x \neq 0 \) Given: \[ f(x) = \left[ \tan\left(\frac{\pi}{4} + x\right) \right]^{\frac{1}{x}} \] ### Step 2: Simplify \( \tan\left(\frac{\pi}{4} + x\right) \) Using the tangent addition formula: \[ \tan\left(\frac{\pi}{4} + x\right) = \frac{\tan\left(\frac{\pi}{4}\right) + \tan(x)}{1 - \tan\left(\frac{\pi}{4}\right) \tan(x)} = \frac{1 + \tan(x)}{1 - \tan(x)} \] ### Step 3: Substitute into \( f(x) \) Thus, \[ f(x) = \left[ \frac{1 + \tan(x)}{1 - \tan(x)} \right]^{\frac{1}{x}} \] ### Step 4: Rewrite \( f(x) \) We can express \( f(x) \) as: \[ f(x) = \left(1 + \tan(x)\right)^{\frac{1}{x}} \cdot \left(1 - \tan(x)\right)^{-\frac{1}{x}} \] ### Step 5: Take the limit as \( x \to 0 \) We need to evaluate: \[ \lim_{x \to 0} f(x) \] ### Step 6: Use the exponential limit We can use the fact that: \[ \lim_{t \to 0} \left(1 + t\right)^{\frac{1}{t}} = e \] ### Step 7: Analyze the components As \( x \to 0 \): - \( \tan(x) \approx x \) - Therefore, \( \tan(x) \to 0 \) ### Step 8: Substitute into the limit Now we can rewrite our limit: \[ \lim_{x \to 0} f(x) = \lim_{x \to 0} \left(1 + \tan(x)\right)^{\frac{1}{x}} \cdot \left(1 - \tan(x)\right)^{-\frac{1}{x}} \] ### Step 9: Evaluate each part 1. For \( \left(1 + \tan(x)\right)^{\frac{1}{x}} \): \[ \lim_{x \to 0} \left(1 + \tan(x)\right)^{\frac{1}{x}} = e^{\lim_{x \to 0} \frac{\tan(x)}{x}} = e^1 = e \] 2. For \( \left(1 - \tan(x)\right)^{-\frac{1}{x}} \): \[ \lim_{x \to 0} \left(1 - \tan(x)\right)^{-\frac{1}{x}} = e^{-\lim_{x \to 0} \frac{-\tan(x)}{x}} = e^{-1} = \frac{1}{e} \] ### Step 10: Combine the results Combining these results gives: \[ \lim_{x \to 0} f(x) = e \cdot \frac{1}{e} = e^2 \] ### Conclusion Thus, for \( f(x) \) to be continuous at \( x = 0 \), we have: \[ k = e^2 \]

To find the value of \( k \) such that the function \( f(x) = \left[ \tan\left(\frac{\pi}{4} + x\right) \right]^{\frac{1}{x}} \) is continuous at \( x = 0 \), we need to ensure that: \[ \lim_{x \to 0} f(x) = f(0) = k \] ### Step 1: Calculate \( f(x) \) for \( x \neq 0 \) ...
Promotional Banner

Topper's Solved these Questions

  • SOLVED PAPER 2018

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MCQS|50 Videos
  • STRAIGHT LINE

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise EXERCISE 2(MISCELLANEOUS PROBLEMS)|30 Videos

Similar Questions

Explore conceptually related problems

let f(x)=[tan((pi)/(4)+x)]^((1)/(x)),x!=0 and f(x)=k,x=0 then the value of k such that f(x) hold continuity at x=0

f(x)=[tan(pi/4+x)]^(1/x), x!=0 and f(x)=k, x=0 is continuous at x=0 then k=

f(x) = {{:(("tan"((pi)/(4)+x))^(1//x)",",x ne 0),(k",",x = 0):} for what value of k, f(x) is continuous at x = 0 ?

If {(f(x) = 1-x), (for 0 lt x le 1),(= k , for x = 0)} is continuous at x = 0, then k =

If f(x) = (x-sin x)/x for x!= 0 , and f(x) = k , for x = 0 is continuous at x = 0 ,then k = ….

If f(x) = {((1-cosx)/x, ",", x != 0),(k, ",", x = 0):} is continuous at x = 0 then k =

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-SOLVED PAPER 2019-MCQS
  1. If z=ax+by,a,b,gt0 subject to xle2,yle2,x+yge3,xge0,yge0 has minimum v...

    Text Solution

    |

  2. The direction ratios of the normal to the plane passing through origin...

    Text Solution

    |

  3. The pdf of a random variable X is f(x)=3(1-2x^(2)),0ltxlt1 =0" ...

    Text Solution

    |

  4. The eccentricity of the hyperbola 25x^(2)-9y^(2)=225 is . . .

    Text Solution

    |

  5. If f(x)=x+(1)/(x),xne0, then local maximum and minimum values of funct...

    Text Solution

    |

  6. Derivative of sin^(-1)((t)/(sqrt(1+t^(2)))) with respect to cos^(-1)((...

    Text Solution

    |

  7. A player tosses 2 fair coins. He wins Rs. 5 if 2 heads appear, Rs. 2 i...

    Text Solution

    |

  8. In DeltaABC, with the usual notations, if sinB sinC=(bc)/(a^(2)), then...

    Text Solution

    |

  9. If A={x in R//x^(2)+5|x|+6=0} then n(A)= . . .

    Text Solution

    |

  10. int(dx)/((sinx+cosx)(2cosx+sinx))=

    Text Solution

    |

  11. The solution of the differential equation (1+x^(2))(dy)/(dx)+1+y^(2)...

    Text Solution

    |

  12. sin[3sin^(-1)(0.4)]= . . .

    Text Solution

    |

  13. If line (2x-4)/(lamda)=(lamda-1)/(2)=(z-3)/(1) and (x-1)/(1)=(3y-1)/(l...

    Text Solution

    |

  14. For sequence (t(n)), if S(n)=5(2^(n)-1) then t(n)= . . .

    Text Solution

    |

  15. If f(x)=[tan((pi)/(4)+x)]^((1)/(x)),xne0" " f(x)=k , "x=0, ...

    Text Solution

    |

  16. Which of the following fucntion has period 2?

    Text Solution

    |

  17. Which of the following can not be the direction cisines of a line?

    Text Solution

    |

  18. If the p^(th), q^(th) and r^(th) terms of a G.P are a,b,c respectivel...

    Text Solution

    |

  19. int((pi)/(18))^((4pi)/(9))(2sqrt(sinx))/(sqrt(sinx)+sqrt(cosx))dx= . ....

    Text Solution

    |

  20. The maximum value of Z=5x+4y, subject to yle2x,xle2y,x+yle3,xge0,yge0 ...

    Text Solution

    |