Home
Class 12
MATHS
y=tan^-1[(3x-x^3)/(1-3x^2)],-1/sqrt3ltxl...

`y=tan^-1[(3x-x^3)/(1-3x^2)],-1/sqrt3ltxlt1/sqrt3`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=tan^(-1)((3x-x^3)/(1-3x^2)),-1/(sqrt(3))ltxlt1 /(sqrt(3)), then find (dy)/(dx)

If y=tan^(-1)((3x-x^3)/(1-3x^2)),-1/(sqrt(3))ltxlt1 /(sqrt(3)), then find (dy)/(dx)

Differentiate the following w.r.t. x: tan^-1((3x-x^3) / (1-3x^2)),-1/sqrt3 < x < 1/sqrt3

y = tan^(-1)((3x-x^3)/(1-3x^2)), 1/(sqrt3) , x , 1/(sqrt3) .

Prove that 3 tan^-1 x = tan^-1(3x-x^3)/(1-3x^2), |x| < 1/sqrt3

Prove that : tan^-1 x +tan^-1 2x/(1-x^2) = tan^-1 ((3x-x^3)/(1-3x^2)), |x| < 1/sqrt3

Differentiate tan^(-1)((3x-x^3)/(1-3x^2)) , if -1/(sqrt(3))

Prove that tan^(-1)x+"tan"^(-1)(2x)/(1-x^(2))=tan^(-1)[(3x=x^(3))/(1-3x^(2))],|x|lt1/(sqrt(3))