Home
Class 12
MATHS
If f(x)=sin(x^2)/x, x !=0, f(x)=0, x=0, ...

If `f(x)=sin(x^2)/x, x !=0, f(x)=0, x=0`, then at `x=0`, `f(x)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f:RrarrR be function defined by f(x)={(sin(x^2)/2, ifx!=0),(0,if x=0):} Then, at x=0, f is

If f(x)={(sin(x^(2)-3x),xle0 6x+5x^(2),xgt0 then at x=0, f(x) is?

If f(x)=x sin ""1/x"for "x ne 0, f(0)=0" then at x"=0, f(x) is

If f(x)=x sin((1)/(x)),x!=0 and f(x)=0,x=0 then show that f'(0) does not exist

Let f(x) be a function defined as below : f(x)=sin(x^(2)-3x) ,x le 0 =6x+5x^(2), x gt 0 then at x=0 ,f(x)

If f(x)=sgn(x)={(|x|)/x,x!=0, 0, x=0 and g(x)=f(f(x)), then at x=0,g(x) is

If f(x)=sin|x|-e^(|x|) then at x=0,f(x) is

If f(x)=sin|x|-e^(|x|) then at x=0,f(x) is

If f(x)=sgn(x)={(|x|)/(x),x!=0,0,x=0 and g(x)=f(f(x)) then at x=0,g(x) is