Home
Class 11
MATHS
i^(n)+i^(n+1)+i^(n+2)+i^(n+3)=0...

i^(n)+i^(n+1)+i^(n+2)+i^(n+3)=0

Promotional Banner

Similar Questions

Explore conceptually related problems

If n in N, then find the value of i^(n)+i^(n+1)+i^(n+2)+i^(n+3)

For an positive integer n, prove that : i^(n) + i^(n+1) + i^(n+2) + i^(n+3) + i^(n+4) + i^(n + 5) + i^(n+6) + i^(n+7) = 0 .

Find the value of i^(n)+i^(n+1)+i^(n+2)+i^(n+3) for all n in N.

Value of i^(n)+i^(n+1)+i^(n+2)+i^(n+3)("when" i=sqrt(-1))-

The simplified form of i^(n)+i^(n+1)+i^(n+2)+i^(n+3) is

For any positive integer n, prove that: i^(n)+i^(n+1)+i^(n+2)+i^(n+3)+i^(n+4)+i^(n+5)+i^(n+6)+i^(n+7)=0 .

For any positive integer n, find the value of i^(n)+i^(n+1)+i^(n+2)+i^(n+3)+i^(n+4)+i^(n+5)+i^(n+6)+i^(n+7) .